Last Week’s Work Review#
Option recognition
The choice of actions and policies based on natural language walkthrough is highly similar to “option recognition” in traditional AI study, where natural language walkthrough will help agents to make options for subpolicies selection.
When to start /end
When we want to let agent utilise walkthrough data, the agent needs to know when to execute the walkthrough.
- it needs to know what the current situation is and then know
- what we have already done
- where are we, what to execute next
- what to do next if the previous execution failed
- currently they are not explicitly handled
Reuse object recognition module
We can use go-explore’s object recognition module
You need password to access to the content, go to Slack *#phdsukai to find more.
Part of this article is encrypted with password:
2KL193ngiqg12yJiDH4bw+D2Nlm45qLF/v/qafJrxuBWcpeaKoACuOYOWAlIK5SiIofGzwRhcZOhHR3LtmKaM/j9J0y2vO9Z69ZqP4Ko3UkGLexL1+U7O0+yKZZB9Dw0NBdkewbMFlw00vKHbhtiw37xANvtixAYOeEERG9wDEZPCufYK0nH6DvqP7pzJh28eiAW5I5gKKaMPGGAslvygAU14z7zdpsqrXwajbgmt8F+Z/ivDwgux9KSFtt1azUeou06TjiC4YBmydWs0zwSyatPlyd8RlDDWqzRk7XfiM0Sy95D/Akuz9/xJtRoqR/mv7BpvBXdGK4f8AAxqQPThZSDyKE7WB1FkB3Yzp67a/D+SYwEsrJnmkc5KFpDC5mQdOpz96vhQgWgyacNu05naYKCnUMio4NvxsGgDDnmukGqsjT68lykfNXEwd04lfQYugwH76cztwg64gDJs7++n5ZJ8nOLD+Wk/AW6Kc05qCHt4s+ToYt2tPHcuw4kJxGD8VgQy0rzYUFF29fOjG41W1Pbx5rT7a71FkaMWWSLJDuDRxm88nFneCI0Av2YeDWEVDc2WHIHiS/feWk4ocdW6IE+Jr8R3VImYWrIc9ijVbw2zku9f30cgAMYdKKcY3SpnVX1xFMEVE4YjwfZQNpKgyQ8MD1G6czdvMTS/+HbVKmHjhrQhfL++YMO+IKCA6wwKfkxe7BsCZBMQu9BqH+TKCQDGoao9UuFg/Dlr9ReoR8dzx6nFU+xWNZy402yWRMpW0k9oNjnzWne7rlAxq4yQ5UjdBSMpyatXMpFJxiawhYJjFMA/d6q9hOMXzZRMX6SA9U7J2V174/4ZbkP7b1c5IJqM2mKZdkfoHedAlrc/itSyALJ22y5zxbOiT181Znn/zQzQUen8QfmOrUCrHRo7uRU4lF5AUiquF4G+5W6euTuYidDQ+BroHuQNsgqEfE8O/e+YznKdLe801MeNZ4dfvF37tyHAmcD7A7iUsnIn4R3aI5VBJvdFDDYb7sUYz9UyW+osiP3mtpw5jPpp+gvrPzjDNyk+Ng/GHaBhWvHldDGyFRFI87tjuH94J34o4xNjiUGAnbFS/vBpdlhl5UfoqVPn3tal9WwG/WqHf0MFJAzT33h3kMCM2RteVNgKxsm+S8ZS7s9d+ibcZV2NcJeyr2HC3kRVzSv+aY80342gmKFK06nzJZp/D6OMwoRO00rwSnsh61i1sjhbTGlXZr96rDApvdQpbfE3P6YkkqCkBnIjcdHLlbIpyXaGMlquioyF5Z6R98L5h/um4v9PRfxzbVZQtxaG1CZrUq3MzXTmb6QyvPZOS67D+Dnfv4Dtn2RQl58uuX5LKn/qe6H+pgncYmPvb4C4u6lCvBT1PkhmSbI92G3insuFOCoRQlahaPO1RXixB3S7R/VUTQqZY8HA2Wxss9wl9zgxoC3Gnwo1w+TvvfAlRsX6b9E8WeI6/I2+8KiQJRszE2IG+3v6V5yDx+a0pkMIaOCmEOBJodImNGtLU0ichKobQzt4KPIDfCT7Fwy05Zsjd5HiyN2BOIZkyoHC1VvfQ+qaybFrCtxaBbt5prOqvdzE1gwtBbDjeXeG+Dofhcd6bb6SjTV7xxKbvI4lsEuA/2NbwbPuTqBei+x+hKyxpSysWM+9ZZGsoudnSK83XHx8qYsRgW9o9RQ/nPkjeqsov5g3dcEWJmijByHedin0nCjswc86RMfrSqF5Kf7eXwDuHGrcd6Odn4dbGFnGOwIoORJ4Ux6eu3/SCJ8/pRsrvF8wDH/paHzho8fofhDTFLp1QUgJqTPsF3WmYIJNWk0PSJrutvJBiQwZkpXW6nEtisnsJ5vF06BOrJiFvMYKhNRcYzht6O2if26vNTNSpBA3hPDm20d6vw4P+lvWB5us8uIaBTiFG/UrfSaGgy3tdewpEtXHV8dp6p3gPJv2zfvWtR6/BMpeLdk9NH2/SnZxR/HGG7dfFwq0hnTHJTF1+RH4GuAE0jchgb0iPxq4XsLaz2NCpaV6D6kxttprg4fU9MbjPtmHTW5usLoDfAJF7xgBR4vJ3nJJQUhRs6pBA3gvEvddJyZIeRVkks8wV8FX/mjWE2RwBL44T7ikBshCixu6mKIRXzSgWRf6Kur5pYqQ0DF7RK5y1u4bXhsimiIJFgam9TgvAXGgZUT6xr59G8Go23QGIva7SPLbySWbBRkQiaMyQlUQ3WdyO+58PK2Vz1iynYbekmsojJcPXhp0+KT1qawErSivFzC6vsWxKjqg/NbU5O93cqFsnoBTEmKVXCIS7EtYqw9+skPGfIhbfpoPGfQ/tsOZYnyZf2tVRs7WvFrV1QakwBaPdSPTa2TAK91GGRtpyaffM4azJyBhnS4aZnPF8k/StkMrAOAFtMyuaNlQFeB6qb2ZAfQ8zrgI1r0Hhi65htvRuvT4YkA2ZjlA9kSjkSHetx2RQrcMRsofr6lj2++/5+/ioWx1M5xKOCEkNLIorpSuVhqej9PnNaJapzob32s+XHNBHq5+ERIymdLUfKRM5QhPrl9r4DTP2696fXvpn3ERvruac8G2fV6rl+iNv1LcYA/y2/bhDKrEH2ikS7XmWP2bDgyT5wxq8Gb+yMpsWwChgyvDGS1quyrHRLKxhF8sKUUUIx50Ur+I1GvkqeFuJPFnukRKa4He1I73oqOQeue9ZkQ8QFlSZKoj+1kocYal9DfY5Spwn81LCQAet/QxmmDESYbxsaxuKFIIZwUSnrnOsOKGur+1aWMEglw2OkYS562X6o6VryA7/vdESHruJPCmwyXGnH77oqy8jdnPAgzR8O3dEdNAXRZThB2JN2ElARYilHwMoujCp1SwaooVkyoKFXggfLbp+4YdtlTy/alGeTBspoPzgU+u8mMYv6kiO40k16xNOHaSu5FV2tvOPJuWY+g9jHYD/48hXco7pEmD/NcVPfi20qDTTpfJITtVCLRe9RObwZWHYuLnGXKy5Kh1TvK/VNgGY4zyv0cYx9cvhY8DUTH4xlE1ZtpPXH2k1nZz34/ov1XNriqPyTy7g5uxlxX531S74gDTUjbn7zaxSQDVCCEx4sotAMF1V600iCGJGduN5/Jr4dHEcrS/U+iSCtpHYXDmOHPBkuVbe6wfvm6KH9lD7AHgI0ZkS+sK9eh3uN1VZbfuIsnZQjRr3Mjj/AyzDihPHvrjYrF6CRc5XaJlWO9no2W9xIU1Mj0ALhEq7YKoYQsA61qfhbt4MG90OV816TiEtSbC8hiVySMW9432MS7w3XJQNnnMoFvM7oGXUIuXfeoJNx+nTkg9nxBxMC04j2w6N+dwObNwgDQ6l47hwO+AfbNxjHeK6jDPfKl6YwCKOeKrCBP1xOVTTbRG60h+XP6VwvDygpz879q6pgVSe72KuK0Nn6yeKPAhSifeogLeKLlLGZWVc3axuxRMegbwMmtVom3RfxKmGwXwNU49pwNSv+AfNRoiGXcUDDbxFMYfVMOMmv+NBIGOPtdB2PLUpsi9Kv7oSeFiS/ov3BhvDWppD+5lC2cAn2dqOVlNkAe0yXQp7CNSLFz3CnaIK0zaqykL381MZPfr3sHoLNX/e3EBLN9y4e0hVC+fTK2CmUH3HCIkYVbMjwvyFXrCaIsd/cZ7OMD6ogG7pKrlL6TKTzw93W9+rmLh/eDDmTUeuL29+V1LVVlBZy8O1Akld1SCutsbvTFej72NssG1GvH3B6luvsIlZW3EY3Ni/1A1M8anVZ6TsylXbF+tmPNbvhrPTxycdd+zWbSTzzntE7AJ5hMVTXlw2+VIWITcnMbQFPUxHB3918zDVLj5rB4S5KYNS38y0FhUkinVSTq0lHOJa7LuIlidy4l9zGQ31gSh2YZa39Yf7Gg3kYI6J9kgvVv6xw0qO9rCvYobfntDyha/Mi3IS144P2mBe/twC6W+b1Vydh8zYMtxu3Va14YAzD8m3xWfEyetTr72CX/y9IO2IGkzejCKgub7PjVRyaCKN9Q4toq43QwILFGbJ3kxatALJxoZs90FyVdlC0Bu4KKpfIo21e8VcoC+VJ2smbSmI1j10UgzQPbKXpbL3uRPtctRLw+YS8fyr8Poc6+I7HLeLRYTp8h7xjeLsPWK04UTXVv/sH9nTQObD12X6nauZLZaOqpa8h+2yUPsw/RybrjhrxjchaUxJlOei6oU8kaxtdaPZboyhnl2qvKjghox9aO+Tyr03k228h2oLWM5rtsxNDADSPo399vn/AraMIZdrUu1dkk4r++OyxaQi0lR0DDZ/iKKgLXYrz/JlqBw1lOldYAVEIO6YsDQewqoKEiDbszHTGfXQZTmTSe+Bb9q2dumgLYEktFiFp6LzW5YED2DmymgJ2FZEl7a96Z/kmb0ROs0+0PbIUOQ77nltlErKAJTmQDKIrNOtOwj4puwkyxdFrtBCCJfx/b9ku9bPQEOJXkfQKRl+yU5KzYlgPnyQv3GLeThpef7kBnMawz6uiNDQwmj8njpvL6Ca0QkY6phPm1DnnpzIq++v+zxasiyjWzBAQuY0ww3sF5KNeUBA6RDoCPZsZZulYNm47sWWP2B5T8pL5jUtfZKIf0NSVhmFENcOE95IHQyF7GyTvEifUuCF8ZBv8AALRBInUDrVWH0hCpArdAPsZEAxPai07A9zqA3/VAT8HNB9ZVv9E5BIVVkW1W2yPNu989OziBTD4Minm6Cz/HDvJuXeofDRmqhi41wYGd5RDD8/FMPRrhGVBdapNNO8+LaQgl98n5WO/Zr1EFnUgPYSqIs7xRNk5pkMkpByRLMXYID7R0BcZpAgmXojS0bxO8Rl74gOo9Kc/veScSOhCN1xAOwnQujirrGy0ycdDK+/cfsUpCOBcEJegB6mT4Q/s09ENLfhxkWhs/nFiYf0bWt2MYxyKWsunJj181SBvjom+ctDpUGNeJIyIZOlYcdWFsig6PKSUJQ8ixDJVarskC/iapqo/TrnO/wcRp9uw3cp/zBDK4la+kEg//E74KDo3ZfYBXiXYZm9w5SoBeogNicX/dEIr5K5Ysr2m78MulcM+heofFgUY7nMkHVUy7wS+sO4BqRFpEdDf12De8SaPRIhf6EO7f7ZrgNpzEFm69FjKVC+AKv8zR25hp4QMcA/XNxVX8DAeY5NvdN/CuFyKJH98Z6pCJufc6AhWVur3v35YceyCn5LGdkdosjyhWSHUFj4YfBE3yh0/+x6tuzWLBKnFpj73I8kqTln5xw3cZUMffUpC8JIijk3zYoLm0td7TovaLP4EunAtf9JbNv3Wh9pwHHFjAShlqR/vQHHSI5Qk7ajDK3hPit3aNkiU318fxdXEihXm8SS96VX/12C/PxaioMCeQorodUkjOk4KsiU2E/XeuasGSBK89LDsoXyGChR3qVp4rkAxznIBE+7yI09juJO6iw3Zs5vNs5MleaUlc7nwfMreBBdzybpIzIKHFjnH5av81u26OPPrdovVz8EKKhr8/TUrGjrqnue31Ycou/640pwJrnmRcrax21Y5WPt0UgWDecSAC9xn80Zq2qRuwxYnGoF+hKmmYI8NnT00ZAIzKz4uHFFPOrfcjL3OWyBBiUrh7F+F9KOEWHpCQVawxkPWErQQqlwcM9Z4/NkanR6A3KQJVaqOcZjNARPcI3faBitxXPzzX0vJOyZvvOAtJnwFs6kmoDze7EE9wZ4QKyY9o9QpTtQITOZxBj/OlMMpJavn4jJ3tpAVGDwehnSuJDN4VqB2jSCl3YvvQUvbE12GlubxOZCfjVSPwV9RusVMI9ADcJPyd1bQ4/WZrJCIsXRRPT8wKam9rFqqGkw6SkT6/kMiHhLi/vNPiiROYNlwphP39pDvsDhKUuqNVUtemq8ZPCY6clX31S2ZhpnjpPznLdmoHH1d2hfPaQuCzvLIBOe0pL7KZ5par++4KRusKjvG/76KSvqkrfQjk1TLSOOr8XwUgAEcEJ2IYBqPA9yYL58CTVnSY+qch7fRDzZU7IP7eRWrlSIY1t00PSawYEGuMr0bMlHE2P6PkOTyYxxXG95guj6Xrp9v+wUc+QldWSBuqbjX1CAPPDNBm/YXlOw27GUgwFpOhOoOIgK/FhoyTcMdHTJ5dBFWxGvhJ1wdgmuf6FhNiPkZo2l2QN+L6bsCs/AJW2z9RvpUSroIQ8slf11LgEVsXGfuGtvfiIM8o/9H8BRvdIORbM6y7fwEcrm/7lMtBEVr72NW7XIVENrK4SH0vGQ3UketY9B0SE0as+ZbS37NvL/Mfxc9wIIxf3BmgF5zm+Zmi5ZNBylAPu+YsqEV9l7AXEOFYPyf9cBner7j9Y+uxFRzYcudcxZFIjDiysf+bq1lg1NRzNZkZq1mR78RuOizabtOzB9GYjpGP1ebLal6DSC5fyspLP9Tp49uBzSiD9OkvEonn4IGWtvFan5l34Ik10vW8C3yo2JJkv73HsPCidnOyCtbDBcD3zydx4FhMnYcOPU4x6e5fGNHBxcMie0mqISpBim8lRRVUTiHcFqfuocpmipbhTC8f98zj6BTxtnkjklYjcqCCOTeaAL2sdj7xmWQamDvCRTMbKOPLHRgKyf3F0J5JN/2sUDlT++eS/2hkwIcPjNuy+3bOnC/om2+qbFqyG2GctDOMA7JHmd2ti8Hj8BaoTmEzmeoJuah+Ix7iJc03Ex6Bwilqcc8p11+3dKoD7+l6xSzQMXYTREPGQYAB7BSxi8+I2wwP5SHhjNhPRtEQLaCGT8sLfXzHar2etlErMomvPc8I1BU9wBlRltlgbQzB8+ORLslJxhasjmFN67SADUdOxerczwTDl2+AVpjx22t9mTzcvO0Jv9MRcattS8ZZ4g+J9WXiyT5JHnO9c7ifZtSTfSR9DQ8YfWdnCR03rJGWJk5Ep/o9lHcq7NTvZ5nEGq2gamq/umMohEcVI7Wcj0nkSUcfJh+8v0Keo9blh5/zZkz9WuguPBmAEVUD5AK3AQvLYpDrhefawi/LqIYDVUYIyXyarjKmhXUWB+K5SNzH9M0U2E5TR9cuawE8q1sOSN3A8u7x6QqwXIC0uu3Wll70jfvfBp27nft/zkAZRk/9Hn9rup6rbsp7Bn7NvZwLCEzAPSPuMzile8nKaZy2w/orEilPHzjvMCQ7OykLN/jgMYXFj02mL1zqs72cYI9/kOdFl09H2NiwwVXtuSgiBlw5f9X3siS6kyQMoBv1wdVuVhfOd5CT7xcB4NHmYo/zDwV2dZEu/9SUSgGyQU5NhL6X+jUZUHLbYSjMpotawHfzJZbPryvGco8zS0KXajRd9ggdTIRQ4iXIuZa3oY9YT+KVQFfwqM7e+pLsLt/MabXBgY5dA0lmwgsNh9r2GXRyewIvPnIzzPIrP8C9X6151PtdYCmWdSgZkpuW0I8JZQu77xJ6QvJr7M7sh0zvZQcEqKcMG5RqaEhri7/dcwxrxaP91YdViUFa6axr/bIgoFDPSq9U1FigvXSUQ1B/dHI+fhO1sSObj3CWjLOifu42whnoKK/EACkN3rkOnHbqhsYl+WN7JMw6vdQUBhBTmT5+wEVjmXokGzw65JD6SXe/Y3hVcTMaCFVoQ8uPBt/TQ94poz8UqrZZcjL6cgpNtjRY9IRkEki6d5jVUiZN5iHw5E8jCt2McWs7fWxNpb2640ecGtIXUGoaJ4wB557Oknuux1+hDdqxNWddrbTjPpmmrSWwsHTnjxN0EqhDvI19gmFAU4IBz1TdNwzCsD0gMnFK5XJMPTfWKndM2x0yHcPr4/3yHz/Hzsri570beB2uYwb7PDFlRnDyETe/uhO3WRZXbNbuyrw+h69KlZPcisCi/b9iJybfyhHMazDNQs2DtGcb56iJDP6UwqGAO8k5iNYVE7xuhHA+toZQTGDDQoK9wXfdp8MPbsfkeVTeGo6aSCEDlkVQBU74TOgNK78is/puQaFfG8Tmu/Lb/yg0FZfOqJ1hGXB1EOcNTpy0A/Jo5tkZaRi0O4zUV5PnAk2mQOWVMKr9EtRn2UCWZV7eAUXcD3Tn5hF2igtedWqjxD/gSlcxk5ViWhr8OMxbd8XgER/AAGY2lzpZ/JjnanbnYDPtyEd1tdLRjx3kid8FCbNsBWyRybij+QY9+HFvn6eMXk6H5Vk7igmxY2qF/6MSXfGKNSfjNlrGy+HKf4jCoVUF2nSMd4P/8Ms3mIugMFdGI6eQWxz5zeLdIZqdDFS8++iKyvm3pagWrwIiMWByGYlFq/D6aIpiD26VPYU+T4PNtscMJ8Uj9sbb7qEf3OyvOLdLXdSsjUPgiIsIs86sKv2XuCUNmHQ6az4F+Z5Q8yopd8WXB7zykxC4bhmqipLV9xBfJ6j+QCkK4YfRTDOjXcglMHG8Wf3mvhuXZxgjTJGYp9wtsPM1ThhQ9+2DWRmUpVg5pEG0UE/qTLbgFx4nLUefTB3QiWipSb5HshzNiu5f0tJBEJOvTZ9BBTOUpSbBVwRYuEH1gQgUBvgO8EBDo6o6+DdCLR0n/fr+vcEt8RAwcY59bf86u0iCYlwgbk6bfb3NgSm975NjLXfXfRX7W9J2mxc3bzxFFN7ag5XmA3+gzhIrD2fd9XcvpvW40z1cJf55w+IBHFePOcJsy/g/ZL1s5/0pn68OcgVOO1yhq0nybBIfw2hD/zx0/qPf4rNc2+0IDgPBr+nEPC20Vj8+qg==