Ilya_kostrikov Offline Rl With Implicit Q Learning 2021

[TOC] Title: Offline Reinforcement Learning with Implicit Q-learning Author:Ilya Kostrikov et. al. Publish Year: 2021 Review Date: Mar 2022 Summary of paper Motivation conflict in offline reinforcement learning offline reinforcement learning requires reconciling two conflicting aims: learning a policy that improves over the behaviour policy (old policy) that collected the dataset while at the same time minimizing the deviation from the behaviour policy so as to avoid errors due to distributional shift (e.g., obtain out of distribution actions) -> the challenge is how to constrain those unseen actions to be in-distribution. (meaning there is no explicit Q-function for actions, and thus the issue of unseen action is gone) all the previous solutions like 1. limit how far the new policy deviates from the behaviour policy and 2. assign low value to out of distribution actions impose a trade-off between how much the policy improve and how vulnerable it is to misestimation due to distributional shift. ...

March 22, 2022 · 4 min · Sukai Huang