Xiwen_liang Contrastive Instruction Trajectory Learning for Vision Language Navigation 2022
[TOC] Title: Contrastive Instruction Trajectory Learning for Vision Language Navigation Author: Xiwen Liang et. al. Publish Year: AAAI 2022 Review Date: Fri, Feb 10, 2023 url: https://arxiv.org/abs/2112.04138 Summary of paper Motivation previous works learn to navigate step-by-step following an instruction. However, these works may fail to discriminate the similarities and discrepancies across instruction-trajectory pairs and ignore the temporal continuity of sub-instructions. These problems hinder agents from learning distinctive vision-and-language representations, Contribution we propose a coarse-grained contrastive learning objective to enhance vision-and-language representations by contrasting semantics of full trajectory observations and instructions respectively; a fine-grained contrastive learning objective to perceive instructions by leveraging the temporal information of the sub-instructions. a pairwise sample-reweighting mechanism for contrastive learning to sampling bias in contrastive learning. Some key terms Limitation of current VLN model ...