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Abstract

Angry Birds is a famous environment for agents to learn physical reasoning. How-

ever, the deep reinforcement learning agents often underperform due to a lack of

training set of game levels. To address the issue, procedural level generation is used

to synthesise new Angry Birds game levels. However, the current rule-based Angry

Birds procedural level generator [Stephenson and Renz, 2016b, 2019] is incapable of

generating game levels that aid agents in learning physical reasoning, as it cannot

guarantee the level of physical reasoning required in order to solve the generated

game levels.

Hence, in a new approach, we use walkthrough descriptions to generate Angry

Birds game levels and train the Generative Adversarial Networks (GANs) based pro-

cedural level generator by imitating the high-quality handcrafted levels. Unlike the

conventional imitation approach, the proposed one is able to control the style of the

generated game levels and also enhance the diversity of the game level dataset via

manipulating the input walkthrough descriptions. Both qualitative and quantitative

evaluations are conducted to demonstrate that the generated game levels using this

method demand high level of physical reasoning to solve, just like the handcrafted

game levels.

Besides that, we developed a new Angry Birds walkthrough dataset called AbVat.

It is a valuable dataset capable of facilitating a variety of meaningful research tasks

in the domain of spatial-temporal understanding and reasoning.

Keywords— Procedural Level Generation, Generative Adversarial Network (GANs)
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Chapter 1

Introduction

1.1 Background

In Section 1.1.1, I introduce the notion of "Physics-based simulation game (PBSG)" and

the associated research challenges. Prerequisite knowledge of PBSG is useful because Angry

Birds, the game on which this thesis is based, fits into this category. Section 1.1.2 will describe

the "Procedural Level Generation" methodology (PLG). The works of this thesis, falls under

this subject.

1.1.1 Physics-based simulation game (PBSG)

Physics-based simulation game (PBSG) is a category of video games in which the behaviour

of the entities in the game world obeys Newtonian physics [Renz and Ge, 2015]. Of all

different forms of PBSG, Puzzle PBSG have grown in popularity among Artificial Intelligence

(AI) researchers because of the difficulty it possesses in the perspective of AI agents.

The Angry Birds game, a classic Puzzle PSBG, is considered to be challenging. Stephen-

son et al. [2020] demonstrated that the Angry Birds game is the first single player game that

is EXPTIME-hard. The rationale falls into two aspects. Firstly, the game is not fully observ-

able. (This type of game is often referred as "information incomplete game") AI agents have

no access to the internal statistics, but rather, they can only collect game state information

by perceiving the visual display of the game. Secondly, The action space for playing Angry

Birds game is large and continuous. An agent can shoot a bird in 360 degrees with varying

amount of strength. Therefore, even a minor difference in the input will produce a drastically

different result. In addition, due to the problem of floating point imprecision, even the same

operation may not yield the exact same result. Thus, it is not possible for an AI agent to

come up with an optimal strategy by simply computing the exact outcome of each move.

1



2 Introduction

1.1.2 Procedural Level Generation (PLG)

Procedual Level Generation (PLG) is a technique in the video game industry for automating

the process of level creation by using algorithms rather than manually crafting. It signifi-

cantly frees developers from a labor-intensive level creation process. This statement still ap-

ply in the research area of Artificial Intelligence [Shaker et al., 2016], because learning agents

require enormous amount of training set of levels to obtain competitive strength. However,

designing large scale meaningful levels that requires high level of physical reasoning to solve

is almost inapplicable for most of researchers [Long et al., 2017].

As a result, academic interest in PLG, an algorithm capable of synthesising large-scale

training sets of levels, has grown in recent years. Additionally, generating a wide range of

diverse levels for training also benefits the learning agents in terms of generalisation ability.

1.2 Motivation

The performance of the deep reinforcement learning agents in Angry Birds game often suffer

from a shortage of training sets of game levels. In the AIBirds’s Angry Birds AI competition

[Renz et al., 2015; Stephenson et al., 2018], only 21 game levels are provided for training,

which is very insufficient. To address the issue, procedural level generation is used to syn-

thesise new Angry Birds game levels.

The current Angry Birds game level generator, developed by Stephenson and Renz [2016a,b,

2019], generates Angry Birds game levels using a rule-based generation algorithm, with the

probability of choosing and placing various building blocks affected by a pre-defined fitness

function.

However, a severe disadvantage of rule-based method is that people cannot encode

"abstract terms" into mathematical form and feed them to the rules’ function. Thus, the

Stepheonson and Renz procedural level generator is incapable of introducing "physical rea-

soning" features into its fitness function. As a result, there is no guarantee that the syn-

thesised game levels demand a high level of physical reasoning to solve. Therefore those

synthesised levels are ineffective for agents to learn physical reasoning.

In contrast, a procedural level generation algorithm that generates game levels by imitat-

ing existing high-quality handcrafted ones is considered as a better approach. The generated

levels will also demand a high level of physical reasoning to solve, as they imitate those

high-quality handcrafted levels. In the perspective of statistics, imitation approach does not

provide explicit parametric specification of the distribution, hence preventing quality degra-
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dation due to an inappropriate choice of modelling.

However, the imitation approach raises two concerns: the first is how we can control

the generation process to produce required game levels in the absence of explicit generation

rules, and the second is how we can enhance the diversity of the game level dataset if they

merely imitate the existing ones.

Therefore, we seek for an imitation-based procedural level generation approach to gener-

ate Angry Birds game levels that require high level of physical reasoning to solve, while also

addressing the two concerns inherent in the imitation approach.

1.3 Contribution

Our approach uses walkthrough descriptions to generate Angry Birds game levels and trains

the procedural level generator by imitating the high-quality handcrafted levels. We tested

several Generative Adversarial Networks (GANs) variants as our backbone architecture to

imitate handcrafted levels. Eventually by combining StackGAN2, the SOTA GAN model,

with extra training tricks, we obtain a promising preliminary results.

The main contribution of the thesis work is shown as follows:

• In comparison to the Stephenson and Renz [2016a,b]’s rule-based level generator, the

proposed approach can generate better game levels in terms of the level of physical

reasoning required to solve.

• In comparison to conventional imitation approach, our proposed one achieves the fol-

lowing things:

1. Our approach is able to control the style of the output game levels even in the

absence of explicit generation rules, by providing associated input walkthrough

descriptions

2. Our approach is able to enhance the diversity of the game level dataset as it can

generate novel levels by manipulating the input walkthrough descriptions via

operations such as "concatenation," "replacement," and "removal"

• The work demonstrate the limitation of using Conditional GAN [Mirza and Osindero,

2014] and Bidirectional GAN models [Donahue et al., 2016] for generation tasks under

training data shortage (Shown in Chapter 5). Following that, the work proves the ef-

fectiveness of applying latent space reduction, latent space mapping, transfer learning,
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multi-scale learning and data augmentation to address data scarcity and sparsity prob-

lems and thus successfully train a deep learning model even with very limited amount

of training data.

• Additionally, this thesis contributes to the development of AbVat, the Angry Birds

game levels and walkthrough dataset (Shown in Chapter 4). AbVat is useful not just

for training procedural level generation models, but also for a variety of other study

fields, such as natural language processing and reinforcement learning.

1.4 Thesis Outline

The rest of this thesis is organized as follows.

• In Chapter 2, I will review the previous literature on procedural game level genera-

tions, and then discuss the contributions and limitations of the existing approaches.

• Chapter 3 provides a concise overview of the theoretical principles and prior knowl-

edge required for comprehending and appreciating the work of this thesis.

• Chapter 4 introduces the AbVat dataset (i.e. the Angry Birds Visual and Text walk-

through dataset), which can be used in content generation task and many other AI

related research areas.

• Chapter 5 describes the preliminary attempts for the game level generation.

• Chapter 6 shows the final proposed approach for the game level generation condi-

tioned by walkthrough description using GANs model.

• Chapter 7 specifies the experimental settings and the evaluation metrics.

• In Chapter 8 we examine the performance of the proposed design using both qualita-

tive and quantitative evaluation and eventually demonstrate the capability of generat-

ing useful game levels for learning physical reasoning.



Chapter 2

Review of the Literature

I will review current approaches to procedural level generation in this Chapter. To our

knowledge, There is no PLG literature that put emphasis on "walkthrough-oriented" level

generation. In other words, no experiments have ever been conducted to enable generators

to produce levels based on walkthrough descriptions. The scarcity of available game level

and walkthrough training dataset may be the primary reason for this situation.

Nonetheless, prior works on procedural level generation can be classified into two broad

categories:

1. Rule-based generation with the use of Evolutionary Algorithm (Shown in Section 2.1).

2. Imitation-based generation that learns from existing handcrafted game levels (Shown

in Section 2.2).

However, each has its own set of advantages as well as serious limitations. Section 2.3 will

review and summarise them.

2.1 Rule-based generation

Earlier studies on Angry Birds level generation concentrated on the diversity of architec-

ture design. [Stephenson et al., 2018] Stephenson and Renz [2016a] developed a rule-based

generator for building architecture. The rules are very straightforward:

1. A structure is constructed from the top to bottom.

2. Randomly select building blocks to form a symmetrical building component.

3. Expanded the structure by stacking the symmetrical building component to the bottom

middle of the existing one.

5



6 Review of the Literature

A probability table is used to sample different building blocks so as to generate building

components of various shapes. Thus, although the rules are simple, it can generate large

amount of diverse game levels.

In his subsequent work [Stephenson and Renz, 2016b], an additional fitness function is

introduced to evaluate the overall score of the generated structures. Later in Stephenson

and Renz [2019]Kaidan et al. [2016], the fitness function is used under the procedure of

Evolutionary Algorithm (EA) to control the style of the output generated game levels

However, quantifying and encoding "abstract terms" into mathematical forms become the

severe issue of this approach. For instance, it is not applicable to encode "playability" and

"enjoyment" concepts into mathematical forms and feed into the fitness function. Thus we

cannot guarantee that the synthesised levels are enjoyable to play. (Abdullah et al. [2019]

once suggested that an Angry Birds level would be more enjoyable if shooting a bird could

trigger a chain of domino effects, though this definition is not precise and accurate.)

2.2 Imitation of handcrafted levels

While researchers strive to develop a suitable fitness function for their rule-based generators,

other studies investigated the use of machine learning models to produce game levels by

imitating the existing ones. As a result, an explicit modelling of the game levels is no longer

required as the generator only needs to learn how to sample new levels that are close to the

training data distribution.

Prior research on the use of Deep learning generative model to imitate existing game lev-

els seems to be yielding promising results. Amongst of those experiments, Volz et al. [2018]

trained a deep convolutional generative adversarial network (DCGAN) to generate levels for

video game Super Mario Bros. Jain et al. [2016] uses Variational Autoencoder (VAE), an unsu-

pervised learning model, to create levels for the platform game "Lode Runner". Summerville

and Mateas [2016] used Long Short Term Memory (LSTMs) to generate Super Mario levels.

The underlying principle of LSTMs model is that given a starting point (for example, the first

segment of the game level), the model will produce a sequence of content segments and then

concatenate them together to form a complete level. Whereas Snodgrass and Ontanón [2016]

employs a Markov model to produce Super Mario levels. Compared to RNN model, Markov

model is stochastic in nature, as outputs are sampled from a probability distribution.
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Evolutionary Algorithm based
Level Generation

Imitation learning based
Level Generation

Controllability High Low
Diversity High TBC
Quality Low High
Training data Not required Required

Table 2.1: Comparison of level generation methods between two categories

2.3 Review and Summary

In summary, although Angry Birds procedural level generation methods that use rule-based

approach are capable of generating stable and diverse game levels, the levels produced us-

ing this approach are often useless for agents to learn physical reasoning, as it is difficult

to hard-code abstract concepts into mathematical forms so as to constrain the generation

process (Shown in Figure 2.1). In the perspective of human players, the machine generated

levels often feel cluttered and uninteresting, and they can quickly tell the difference between

machine generated levels and handcrafted ones.

On the other hand, the imitation-based procedural level generation methods aim to gen-

erate high-quality levels by imitating high-quality handcrafted ones. Procedural level gener-

ators in this manner are able to produce levels containing abstract level features without the

need of designing a super sophisticated rules.

However, imitation learning models lack control over the styles of the generated levels

due to the absence of explicit level modelling. In contrast, rule-based generators are able

to constrain the generated game levels by changing the parameters of the fitness function.

(e.g. Skinny buildings can be generated by penalising high aspect ratio value in the fitness

function) All the current imitation-based procedural level generator does not address this

issue. Another concerns for the imitation-based model is that whether it can produce diverse

game levels since it only mimic the existing ones. We will examine the diversity of the

imitation-based PLG model later in Chapter 8. The comparison between two types of level

generation method is given in Table 2.1.

In conclusion, the results of the existing literature indicate that only feasible solution for

generating levels that is useful for agents to learn physical reasoning falls into imitation-

based approach. existing handcrafted levels. However, the imitation approach raises two

concerns: the first is how we can control the generation process to produce required game

levels in the absence of explicit generation rules, and the second is how we can enhance the

diversity of the game level dataset if they merely imitate the existing ones. The work of this
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(a) Level generated by IratusAves, winning entry for the 2017 and 2018 AIBIRDS level generation
competition

(b) Angry Birds, Easter Eggs level 8 (©Rovio Entertainment)

Figure 2.1: Comparison between machine generated level and handcrafted level
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thesis aims to solve those two concerns. Before going into the details of our approach, we will

discuss the theoretical background in the next chapter, which is helpful for comprehending

and appreciating the work of this thesis.
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Chapter 3

Theoretical Background and

Related Work

This chapter provides a concise overview of the theoretical principles and prior knowledge

which is helpful for comprehending and appreciating the work of this thesis. Since our work

makes use of walkthrough descriptions to condition the produced levels, readers should

familiarise themselves with the research in Natural Language Processing (NLP) so as to un-

derstand the work of our study. (Shown in Section 3.1). The concept "Multimodal training"

will be discussed in Section 3.2 because our model’s training process is to utilise both walk-

through descriptions and handcrafted level images. Hence the work falls into this domain.

In Section 3.3, we will introduce the Generative Adversarial Networks (GANs) model, which

serve as the backbone generative model of the proposed procedural level generator.

3.1 Natural Language Processing (NLP)

Natural Language Processing (NLP) is a set of theoretically inspired statistical techniques

for the automatic evaluation and representation of human language. Since the late 1990s,

statistical NLP has been the dominant field of NLP analysis [Cambria and White, 2014].

Since then, researchers increasingly shifted their attention away from syntactic and symbolic

representation of texts towards semantic representation associated with the context. Words

that were previously symbolised by one-hot representation are now encoded into real-valued

vectors. In 2013, Mikolov et al. [2013b] published his well-known "Word2Vec" technique

for generating embedding vectors of words. The theoretical grounding of two proposed

model architecture CBOW and Skip-gram [Mikolov et al., 2013a] date all the way back to

Harris’ distributional hypothesis in 1954 [Harris, 1954]: "words that are used and occur in

the same contexts tend to purport similar meanings". Later in 1957, Firth further elaborated

11
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and clarified the distributional hypothesis: "you shall know a word by the company it keeps"

[Firth, 1957]. By applying Mikolov’s method, people find that words with similar semantic

meaning will stay close (often in cosine distance) in the vector space. Deep Learning (DL)

models that use Word2Vec or other word embedding techniques are capable of tackling more

complex NLP tasks that involve semantic comprehension of the context, such as Machine

Translation and Question Answering.

The architecture of the NLP models has also evolved rapidly in recent years, from RNN

[Rumelhart et al., 1985], LSTM [Hochreiter and Schmidhuber, 1997], GRU [Chung et al.,

2014], to Transformers [Vaswani et al., 2017]. Now, models with multi-head, bidirectional and

attention mechanism, such as BERT [Devlin et al., 2018] and GPT [Radford et al., 2018] have

already been able to solve several basic Natural Language Understanding (NLU) challenges.

However, these state of the art (SOTA) models still underperform in complex tasks. For

instance, GPT-2 model [Radford et al., 2019] that is trained for text/story generation often

generates stories that are syntactically correct but semantically and logically wrong during

the testing session.[Ha, 2019]

3.1.1 NLP and Reinforcement Learning Agent

Reinforcement learning (RL) agents that are trained by using natural language often have

greater generalisation performance compared to models that are trained by other modality

of data. Recently, big tech companies and research laboratories such as Microsoft [Côté

et al., 2018] and Deepmind [Hill et al., 2020; Abramson et al., 2020] have put a premium on

text-based learning agents. For instance, OpenAI asserts that their current Visual-Language

model is capable of achieving SOTA success in one-shot Visual Question Answering (VQA)

classification tasks [Radford et al., 2021]. Thus, having a generative level generator that

generates game levels based on guide descriptions is really beneficial. By implementing the

model, text walkthroughs can serve as built-in linguistic cues for the game levels, allowing

for the training of a language-based agent capable of doing physical reasoning.

3.2 Multimodal training

In the real world environment, data often exists in various modality. As such, integrating

different types of data into one single agent model (also known as Multimodal model) seems

to be the future target to accomplish. There is so much more to discover in terms of the

architecture design, training process design, loss function design to name a few.



§3.3 Generative Adversarial Network (GANs) 13

In order to put different modality of data in to one model, two approaches have emerged:

1. Use visual information as value, and then text information as query and key to perform

attention mechanism [Yu et al., 2019].

2. Encode both text and visual information into latent vectors. After that, concatenate

them into one joint latent vector with higher dimension and feed them into the model

[Li et al., 2019; Su et al., 2019; Hill et al., 2020].

Although there has been no discussion about the performance differences between the

two models architectures so far, the preliminary experiment of our work shows that the "con-

catenating latent vectors" approach fails the training process under the shortage of training

data (Details are in Chapter 5).

3.3 Generative Adversarial Network (GANs)

3.3.1 Original GANs and the Adversarial Idea

The adversarial training is essentially a minimax problem, where two modules of the system

compete against each other and improve their performance by turns, creating a virtuous cycle

of self-improving. The adversarial concept was commonly used in Reinforcement Learning

(e.g. Actor-Critic Algorithm [Konda and Tsitsiklis, 2000] and AlphaZero’s Self-play cycle

[Silver et al., 2017]) and now it has been applied successfully to generative model.

The original GANs model [Goodfellow et al., 2014] contains two components: a generator

and a discriminator. The generator Gθ is takes input from a latent variable z and produce

a synthesised samples xg . The discriminator Dφ is a function that denotes the probability

that a sample comes from the real dataset than the generator. Therefore, the discriminator

aims to maximise the its ability to give the correct label to both real samples and generated

samples while the generator aims to make fake sample so good that the chance of correctly

recognising fake samples is minimised. Therefore, the objective function of GANs is shown

below:

min
G

max
D

V(D, G) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1− D(G(z)))] (3.1)

The formula derives from the cross-entropy between the real and generated distribution.

However, during the real practice, the Equation 3.1 cannot provide sufficient gradient for

generator to train. It is because during early training stage, the quality of generated data

is poor and thus they can be easily recognised by the discriminator (i.e. D(G(z)) tends
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Figure 3.1: Saturating Loss problem illustration
Copyright and adapted from Nips 2016 tutorial: Generative adversarial net-

works[Goodfellow, 2016]

to be 0). In this case, log(1 − D(G(z))) does not provide sufficient gradient to train the

generator. As such, the author suggests to change objective from minG log(1− D(G(z))) to

minG − log(D(G(z))) to provide much larger gradient during the early stage. This is also

known as "saturating loss problem". (See Figure 3.1)

3.3.2 GANs and Density Estimation

The following well-known definitions can be found in many statistics textbooks.

Definition 3.1 (Density Estimation) Given a finite set of observations of a random variable x1, ..., xn,

we then want to model the distribution of the population of random variable x. This task is known as

density estimation.

Since the main task of GANs model is to generated samples ∼ pg(x) that look like
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real data samples ∼ pdata(x), GANs model belongs to the category of density estimation

(DE). Goodfellow [2016] classifies generative models into two broad categories: explicit and

implicit density models. The distinction between the two is that explicit density models

explicitly define and solve the estimated distribution pg(x) while implicit density model

generate samples without explicitly defining pg(x). The following example illustrates the

difference:

1. The well-known explicit density generative model Variational Autoencoder (VAE) [Kingma

and Welling, 2013] is able to infer latent representation of the real data samples pg(z|x).

2. However, we are not able to do so with the GANs model because the density function

pg(x; θ) is not explicitly defined.

Researchers [Goodfellow, 2016; Lotter et al., 2015; Huang et al., 2017] discovered that

GANs frequently yield higher-quality samples than explicit density models such as VAE. It

is because we are not able to provide explicit density models an appropriate prior distribution

or posterior distribution in real world problem (just like how people cannot appropriately

encode "abstract features" into rule-based procedural level generator). Thus, the estimated

density distribution generated through explicit modelling may not closely match the real data

distribution. In contrast, the GANs model is not required to define a prior distribution. As a

result, the generated samples will not be negatively affected by the unsuitable prior. This is

also the same reason that people prefer to use deep learning instead of explicitly hardcoding

features.

3.3.3 Variations of GANs model

We will introduce GANs’ representative variants in the following section.

3.3.3.1 DCGAN

Deep Convolutional Generative Adversarial Network (DCGAN) [Radford et al., 2015] is a sig-

nificant milestone because it is the first time that convolutional neural networks (CNN) and

GAN are successfully combined and generate high quality images. The major innovations of

the model are shown as follows:

1. Using "stride" instead of "pooling" for down/up sampling to avoid information loss.

2. Using batch normalisation for stabilising the learning process.

3. Unlike VGG network [Simonyan and Zisserman, 2014], no fully connected layers are

added after the convolutional layer.
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4. Using ReLU and LeakyReLU activation functions instead of Tanh to avoid saturation

of the gradient.

Since then, the vast majority of GAN architectures used in Computer Vision (CV) have

been built on the DCGAN architecture.

3.3.3.2 Conditional GAN

Mirza and Osindero [2014] proved that when the model is trained by using a longer joint la-

tent representation obtained by concatenating embedding vectors of additional information

and the original latent variable z, the GANs model can generate synthesised images condi-

tioned by the given information. This discovery paves the way for future research on text to

image generation using a GANs model.

3.3.3.3 Wassertrin GAN

Arjovsky et al. provide extensive theoretical work on the reason why original GANs model

often encounters gradient vanishing and mode collapse [Arjovsky et al., 2017; Arjovsky and

Bottou, 2017]. Arjovsky et al. proves the following, which appears as theorem 2.5 of Arjovsky

and Bottou [2017]

G∗ = arg min
G

Ex∼pmodel(x)[− log D∗(x)] = arg min
G
{KL(pmodel ||pdata)− 2JS(pmodel ||pdata)}

(3.2)

The Equation 3.2 above shows the objective function of the generator of GANs model. Such

a objective function will cause the following problems.

1. Gradient instability: When pmodel ∩ pdata 6= ∅ and the distribution of both real data

and synthesised data get closer, KL(pmodel ||pdata) and −JS(pmodel ||pdata) will contradict

each other because both KL and JS distance are measuring the difference between two

distributions. Thus, it will cause the gradient unstable.

2. gradient vanishing: When pmodel ∩ pdata = ∅, the function will give static value and

thus the gradient become 0.

3. Mode collapse:

• When pdata(x) > pmodel(x), pdata(x) > 0, pmodel(x) ≈ 0, the KL divergences tends

to be 0.

• When pmodel(x) > pdata(x), pmodel(x) > 0, pdata(x) ≈ 0, the KL divergences tends

to be ∞.
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It turns out that the generator will face a far higher penalty if it generates alien samples.

As a result, the generator will choose to produce repetitive but safe pictures rather than

risk making more diversified ones. Such a problem is called "Mode collapse". In fact,

every model that uses reverse KL divergences as its optimisation metric may face the

aforementioned issue of mode collapse.

3.3.3.4 Progressive GAN

Generating a required high quality synthesised image is a challenging task. Therefore, Karras

et al. [2017] proposed a novel training methodology for GANs. They started from generating

low resolution images and then gradually add new layers to both the generator and discrimi-

nator so as to imitate more details progressively throughout training. This methodology both

accelerates and stabilises the training process. For the first time, images with exceptional high

resolution can be generated using GANs.

3.3.3.5 StackGAN

While CGAN is able to generate images that are conditioned by the added text information,

the resulting images are frequently of poor quality. As such, Zhang et al. [2017b] divided the

work into two sub problems, the first of which focuses on the generation of low resolution

images and the second of which focuses on adding fine details on the top of the previous

generated ones so as to form high resolution images. This "divide and conquer" training

concept is very similar to that of Progressive GAN. Additionally, this study introduced a

novel technique called "Conditioning Augmentation", which is to encode text information as

a distribution over the latent space instead of encoding it into a single point. This concept is

very similar to how VAE model produce the latent distribution for its real data samples. This

technique prevents the encoder from generating discontinuous latent data manifold, hence

stabilising the learning process.

3.3.3.6 BiGAN

GANs are capable of learning models that map from basic latent distributions to arbitrarily

complex data distributions. However, due to the fact that the original GANs is an implicit

density estimation model, it is incapable of learning the inverse mapping (i.e. the process of

projecting data back into the latent space). BiGANs, proposed by Donahue et al. [2016], may

be beneficial for auxiliary supervised discriminating tasks. The primary novelty in this ap-

proach is the addition of an encoder that converts the real data to latent representations and
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instructs the discriminator to discriminate not only the samples but also the latent vectors.

The extra encoder can do inverse mapping after training.

3.3.3.7 BigGAN

Brock et al. [2018] demonstrated that increasing the number of training samples, adding more

channels (i.e. the number of parameters), and increasing the batchsize significantly improves

the quality of the synthesised images from GANs models. Additionally, they demonstrated

that the Truncation Trick [Marchesi, 2017], a latent sampling procedure in which latent vec-

tors are sampled exclusively from a truncated normal distribution, aids in the generation of

high-fidelity images.

3.4 Summary

Readers are expected to have a basic understanding about NLP, Multimodal training and

GANs model after this Chapter. These concepts serve as the foundation for the thesis’ work.

Imitation-based procedural level generation requires handcrafted game levels to as train-

ing data. As such, Chapter 4 will introduce a new dataset called "AbVat", that serves as

the training dataset of the thesis’ work. In what follows, the data collecting, cleaning, and

preparation processes will be discussed in detail.



Chapter 4

AbVat Dataset

Training dataset is the backbone of all learning-based models. Any deep learning models

will fail to operate in the absence of a training dataset.

In order to train our machine learning model that generates game levels based on walk-

through information, we require a training dataset that contains both game level structures

and walkthrough descriptions. As such, this chapter introduces a new dataset named "Ab-

Vat", a "Angry birds Visual and Text walkthrough" dataset that consists of 1299 Angry birds

level structures and their associated walkthroughs. (See Figure 4.1)

The properties of AbVat will be discussed in Section 4.1. Following that, we demonstrate

how AbVat is constructed using an open-source web crawling technology. Additionally, in

Section 4.2, we will discuss the data cleaning and preprocessing steps necessary to eliminate

inconsistent and noisy data. We conclude the chapter by addressing all pertinent research

tasks for which AbVat might be used as a training and benchmark dataset.

The reader is expected to comprehend the importance of the AbVat dataset and the

ways in which it can be used as a training and testing resource for agents to learn physical

reasoning.

4.1 Properties of AbVat

The current version of AbVat is built upon the official Angry Birds game series from Rovio

Entertainment Corporation. This dataset will continue to evolve over time as we incorporate

additional handcrafted levels and walkthrough information pairings. The current version of

AbVat has the limitation of being unable to acquire the internal representation of the level

structures owing to copyright concerns. At the moment, only pixel-based representations of

levels are provided. In the future, we intend to migrate the pixel-based levels into accurate

numeric representation using XML format. By doing this, we can directly reconstruct the

game level in the open source version of Angry Birds: Science Birds.

19
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Figure 4.1: Demonstration of AbVat data
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Version. No. of game levels
Avg. duration of
video walkthrough
/sec

Avg word count of
text walkthrough

Original Angry Birds 460 35.91 48
Angry Birds Space 393 35.72 47
Angry Birds Star War 209 30.75 45
Angry Birds Seasons 237 38.95 52

Table 4.1: Summary Stats about Angry Birds game included in AbVat

AbVat’s goal is to collect a massive volume of high-quality game level and walkthrough

data pairs through the course of its development. At the time of writing, AbVat has 1299

high-quality Angry Birds game levels and their associated walkthroughs. The data comes

from the original Angry Birds game and its several variants, including "Angry Birds Star

Wars", "Angry Birds Season" and "Angry Birds Space". (See Table 4.1)

4.1.1 Level representation

There are currently two ways to represent an Angry Birds level in AbVat. The first is a pixel

based depiction of levels. It is done by capturing the overall structure of the game level

manually on the display. The second is to represent through the a structured format. At the

moment, we used the same XML format as Science Birds, which comprises four attributes

for each game object (See Figure 4.2).

The usage of structural XML format has a number of advantages, one of which is that it

enables developers to swiftly reconstruct the level right within in the Science Bird open-

source framework, whereas a pixel-based level representation requires human labour to

judge the content so as to retrieve the state of each game object. One may argue that we

can use object detector to automate the process. For instance, Wang [2013] of Australian

National University created the most widely used object extractor for Angry Birds game.

However, because Wang’s extractor’s primary methodology is based on hardcoded rules, it

is incapable of detecting new objects such as a basketball or a space ship from new version

of Angry Bird games (See Figure 4.3).

4.1.2 Walkthrough data

There are two types of walkthrough data: walkthrough descriptions and walkthrough videos.

The walkthrough descriptions do not provide specific instructions for players to follow (e.g.
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Figure 4.2: Comparison between pixel-based and XML object representation

Figure 4.3: Novel object in Angry Birds Seasons Ham Dunk 2-2 - Kings episode
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Figure 4.4: Example of the text segmentations of a walkthrough description based on
critical states

Shoot Yellow birds at a 45-degree angle with 0.7 force), but rather they are general strategies.

Notice that some levels contains more than one set of walkthroughs since they can be solved

in a various ways.

The text version of the walkthrough is manually divided into chunks based on the critical

states (See Figure 4.4), with the following definition:

Definition 4.1 (Critical state) The term "critical state" refers to the moment when an active object

(e.g. a bird) accomplishes an action that directly alters the environment of the game level or contributes

to a chain of actions that lead to significant changes of the level environment.

Compared to just supplying raw walkthrough descriptions, the segmentation of the texts

provides auxiliary spatial and temporal information. This extra work allows us to train the

model more efficiently or to conduct other meaningful research tasks in the future (Section 4.3

will go into further detail).

Not every text segment can be matched with a portion of the video walkthrough. It

is because the text description may contain backup plans in case the previous shot fails to

accomplish the objective. However, the video walkthroughs neither record the failed at-

tempts nor backup plans. Therefore, it is a quite interesting research task that asks agents

to distinguish between real and assumptive strategies. Indeed, the capacity to comprehend

hypothetical situations is a critical component of AI’s causal reasoning capability.
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4.1.3 Diversity

AbVat is designed with the purpose of including a diverse range of handcrafted Angry Birds

game levels. Diversity is a very essential criteria for training datasets. Models that are trained

with diverse training dataset often have higher generalisation ability, which is essential in

order to address the novelty problem. Following is the well-known definition:

Definition 4.2 (Novelty problem) The phrase "novelty problem" refers to the circumstance in

which AI encounters novel scenarios. The novelty hierarchy may be divided into four levels:

1. Novelty level 0: Objects or entities that have never been observed before.

2. Novelty level 1: Class of things or phenomena that have never been observed before.

3. Novelty level 2: Modification of an object’s characteristics, such as its colour or shape, that was

previously irrelevant and will affect the categorisation of objects.

4. Novelty level 3: A change in the way entities or features are specified, as a result of a dimension

or coordinate system changes.

The capacity to solve novelty problem is critical for real world AI systems. In other dis-

ciplines of research, this issue is also refereed as "Zero Shot Learning" (ZSL). The definitions

can be found in many machine learning textbooks.

Definition 4.3 (Zero-shot learning) In machine learning, zero-shot learning (ZSL) is a problem

scenario in which a learner examines samples from classes that were not seen during training and

must predict the class to which they belong. In general, zero-shot algorithms function by linking

normal and novel classes with some type of auxiliary information that encodes unseen objects into a

known domain.

AbVat dataset enhanced its diversity by including many variants of the Angry Birds

game. The current version of AbVat has four distinct Angry Birds variants and each variant

has its own set of unique game objects, including new birds, new building blocks and even

new background.

Additionally, the inherent physics simulation also varies between different variants, in-

cluding item mass, friction coefficient, and even gravitational field. For instance, the gravita-

tional force is directed downward in the original Angry Birds game. In Angry Birds Space,

gravity is directed towards centre of the planet. As a result, birds may even rotate like satel-

lites around the planet. Since these varying physical parameters are not observable by the

players, agents must have a grasp of Newtonian physics in order to defeat all versions of the



§4.2 Constructing AbVat 25

Angry Birds game rather than simply memorise the trajectories. Hence, the diversity of the

game levels make all the associated tasks challenging.

4.2 Constructing AbVat

The procedure of constructing AbVat dataset is described as follows.

4.2.1 Data collection

The initial stage of AbVat’s construction is to collect high quality game level walkthroughs

from the Internet. The current version is primarily based on data gathered from a well-known

wiki service and forum website called Fandom. It bills itself as the largest fan platform for

wiki hosting services in the world. The majority of the official Angry Birds game walk-

throughs are available at the Fandom website’s "Angry Birds Wiki".

In order to accelerate the data collecting process, we utilise the Scrapy framework to

crawl the contents from the website. Scrapy is a Python web-crawling framework that is

completely free and open-source. It has a thriving community with 36.3k stars and 8.4k forks

on GitHub, and 14.7k related questions on StackOverflow. We queried different key terms

when crawling the web to get as many level walkthroughs and level information as feasible.

For example, we employ terms such as "Three Star Walkthrough," "Three Star Strategy(ies),"

and "Walkthrough material" to search the wiki system for text descriptions of game level

walkthroughs.

4.2.2 Data cleaning and preprocessing

To ensure that the information and walkthroughs collected are of highest possible quality,

Each candidate of the data is manually cleaned and pre-processed. We excludes contents

that are irrelevant to the gameplay in the following way:

1. In terms of video walkthroughs, the game menu screen at the start of each episode, the

score counting scene at the end of each game episode and occasionally unrelated video

advertisement scenes are removed (See Figure 4.5). Also, the video clips has been cut

such that the first frame provides an overview of the whole level structures. It allows

agents to retrieve level information more conveniently.

2. In terms of the text walkthroughs, sentences that are not related to the gameplay are

removed (e.g. the discussion about the final score of each action). We also delete
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Figure 4.5: Demonstration of irrelevant contents in walkthrough video

Figure 4.6: Example of noisy contents in a text walkthrough

sentences that contain the titles of Angry Birds game levels. This can decrease the

likelihood that agents will merely memorise the exact successful actions associated to

that specific game level. We also remove sentences that require agents to refer to other

game levels. It is because this instruction requires agents to have external memory in

order to store the knowledge of previous game levels and use that to generate solutions

for the current one, which is not the primary interest of this dataset (See Figure 4.6).

As previously mentioned, each candidate for the text waklthrough is segmented based

on "critical states". In comparison to delivering raw text paragraph, segmenting the text can

offer supplementary spatial-temporal information about the game level, which helps models

to train more effectively.
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Because of the dataset’s current scale, there is only one human labeller. While data clean-

ing and preprocessing are carried out, I has to admit that the human labeller’s judgement

on the text walkthrough’s segmentation may be biassed. The remedy to this issue of bias is

to have different human labellers clean and pre-process the text walkthrough data indepen-

dently.

4.3 Benchmark dataset for various tasks

To our knowledge this is the only available game level and walkthrough dataset for the

Puzzle Physics Based Simulation game (PBSG). Learning physical reasoning is challenging

for Artificial Intelligence. Therefore, AbVat can be used as a benchmark dataset for a variety

of meaningful research tasks, including the following:

• Category 1: in the presence of a interactive gaming environment

1. Imitation learning (a.k.a. Inverse reinforcement learning): Use walkthrough de-

scriptions as additional information, train agents’ behaviours by having them

imitate the player moves in the walkthrough video.

2. Meta learning: During reinforcement learning, use text walkthroughs as meta

data and then examine the learning efficiency of employing text walkthroughs as

auxiliary information.

3. Robustness testing: Compare several descriptions and determine which one al-

lows for faster learning for agents.

4. Decremental learning: Remove text tokens from the walkthrough description

gradually until the agent becomes unable to extract sufficient information to com-

plete the level.

5. State analysis and prediction: Check if the game’s current state matches the ex-

pected stage indicated in the text walkthrough and then determine if the game is

still solvable in its current state.

• Category 2: in the absence of a interactive gaming environment

1. Level Generation: Generate game levels based on the walkthrough descriptions

of the game episode. Generate novel levels by combining segments of description

from different game levels.
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2. Walkthrough generation: Generate game walkthrough description by observing

the level structure.

3. Level Clustering: group similar levels based on the description or/and the level

information.

4. Parsing task: match sentences in the description to the associated interval of

the video content. It requires agents to possess temporal understanding and

reasoning.

5. Slot filling task: Interpret the walkthrough description by filling in the pre-

defined slot.

6. Relationship Extraction/Prediction: Extract/predict the relationships between

different entities in the game and how they change over time. The relationship

between entities may not be explicitly clarified in the text walkthrough.

• Category 3: with additional labelling

1. Matching task: Match objects and events mentioned in the text walkthrough with

those shown in the video. It requires additional object and event labelling.

2. Advanced Visual Question Answering (VQA): Provide queries to agents that de-

mand spatial-temporal understanding and reasoning.

As shown above, AbVat can serve as a potential benchmark test for a variety of meaning-

ful research tasks, particularly those involving physical reasoning and understanding.

4.4 summary

In summary, AbVat is a valuable dataset that can provide a variety of meaningful research

tasks in the domain of physical reasoning and understanding. In this thsis, we only use it as

training dataset for our procedural level generator.

In the next chapter we will discuss the preliminary attempts of our work.



Chapter 5

Preliminary attempts

The aim of this thesis is to use walkthrough descriptions to generate Angry Birds game levels

and train the procedural level generator by imitating the high-quality handcrafted levels and

we decided to use GANs, the SOTA generative model, as the backbone architecture for our

approach.

Section 5.1 discusses the initial attempt which tried to train an end-to-end cGAN model

directly.

Section 5.2 discussed the second attempt, in which we used BiGAN model and divided

the tasks into two sub problems: the first is just a normal level generation from latent space

to game level content using BiGAN; the second is a mapping task from the text description

to the latent representation of the corresponding game level.

Unfortunately, both of them failed because of some critical oversights, such as the sparsity

issue in the high-dimensional latent space, and the data inefficiency issue during transfer

learning. Nonetheless, we identified the root causes of each attempt’s failures and devised

remedial strategies in our final approach.

5.1 Preliminary Attempt 1: contrastive learning on text and

image pair

The initial attempt is based on a very simple intuition. By having the text information into

the latent value of the GANs generator, we can generate levels that are conditioned by the

provided text. This is precisely the Conditional GAN idea from [Mirza and Osindero, 2014].

In addition to that, we included a training trick, called Contrastive Training, so as to

improve the text’s and levels’ semantic coherence. Contrastive training has been a popular

and effective strategy for classification tasks.

The following sections will cover the detailed methodology and experimental results,

29
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Figure 5.1: The architecture of the cGANs based model of the first attempt.

followed by a summary of the findings and suggestions for improvement.

5.1.1 Method

5.1.1.1 Overview

The initial attempt was based primarily on the cGAN architecture [Mirza and Osindero,

2014]. The walkthrough sentence embeddings were concatenated with the latent variable z

to create a combined latent representation. It was then sent into the generator, which gener-

ates synthesised pixel-based level representations. Following that, both the actual and false

samples were again combined with the sentence embeddings and sent to the discriminator.

The discriminator will attempt to classify the incoming samples correctly. The loss value

associated with the discriminator’s performance will provide gradient for back-propagation

method, training both the discriminator and the model generator (See Figure 5.1).

5.1.1.2 Sentence embedding

In order to concatenate walkthrough descriptions information to the original latent vector z,

the walkthrough descriptions of the game level must be translated into embedding vectors

with the semantic meaning preserved. We employed the off-the-shelf sentence encoder "Sen-



§5.1 Preliminary Attempt 1: contrastive learning on text and image pair 31

tence BERT" from Reimers and Gurevych [2019] in this experiment. In comparison to vanilla

BERT, Sentence BERT incorporates new pooling and concatenation strategies on top of the

basic BERT architecture, significantly improving the efficiency of the sentence embedding

process. The off-the-shelf "Sentence BERT" transformer from the huggingface open-source

library encodes a sentence into a 768-dimensional embedding vector.

5.1.1.3 Latent representation z

In GANs model, the generator takes a point from latent space z as input and generates

synthesised samples. For cGAN to work, the generator must concatenate the original latent

vector z with the conditioned information y and form joint latent representation. As such,

the ratio of text embedding space to original latent space may have an effect on the final

result. Typically, researchers construct GANs models using a 100-dimensional hypersphere

with each variable derived from a Gaussian distribution with a mean of zero and a standard

deviation of one. The well-known text-to-image GANs models, StackGAN, employed size

128 and 100 respectively for text embedding space and latent space. However, so far there

has been no official discussions or agreements on the best ratio settings. In our experiment,

we followed the conventional 100-dimensional latent space for z . However, further trials and

analysis are required to determine the ideal parameters.

5.1.1.4 Contrastive training

Theoretically, training using negative examples enables the discriminator to develop a more

consistent semantic relationship between the conditional text information and the samples.

Other works, such as Tao et al. [2020], advocated for the inclusion of negative samples in

GANs models to guarantee that the matched sample-text data points are located at the lowest

point on the discriminator loss function surface, resulting in an efficient minimax process (See

Figure 5.2).

As a result, the loss function of the cGAN architecture combined with contrastive learning

is as follows:

LD =− E(x,t)∼pdata
[log D(x, et)]

− Ez∼pz ,t∼pdata [log(1− D(G(z, et), et))]

+ λE(x,tmis)∼pmismatch_data
[log D(x, etmis)]

(5.1)

LG = Ez∼pz ,t∼pdata [log(1− D(G(z, et), et))] (5.2)
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Figure 5.2: A diagram for contrastive learning and negative samples

Equation 5.1 represents the loss function for the discriminator in the GANs model,

whereas Equation 5.2 represents the loss function for the generator in the GANs model.

x denotes actual game level samples, whereas t denotes the corresponding text walkthrough.

et is the embedding vector and λ is the contrastive training term’s coefficient.

5.1.2 Experiment and result

5.1.2.1 Hardware and software settings

The model was built using Pytorch framework [Paszke et al., 2019] with Nvidia GeForce RTX

3090 GPU (See Table 5.1)

5.1.2.2 Dataset

AbVat dataset is our only choice. AbVat was discussed in length in Chapter 4.
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GPU TITAN RTX GeForce RTX 3090

SMs 72 82
CUDA Cores 4608 10496

Tensor Cores
576
(2nd Generation)

328
(3rd Generation)

RT Cores 72 82
ROPs 96 112
GPU Boost Clock 1770 MHz 1695 MHz
Memory Clock 7000 MHz 9750 MHz
Total Memory 24GB GDDR6 24GB GDDR6X
Memory Interface 384-bit 384-bit
Memory Bandwidth 672 GB/s 936 GB/s
TGP 280W 350W

Table 5.1: Nvidia GPU specs

5.1.2.3 Training settings

The suggested network was optimised using the Adam algorithm [Kingma and Ba, 2014]

with β1 = 0.0 and β2 = 0.9. According to the Two Timescale Update Rule (TTUR) [Heusel

et al., 2017], the learning rate for the generator is set to 0.0001 and 0.0004 for the discriminator.

The contrastive learning term’s coefficient is set at 0.5. The model was trained over a period

of 200 epochs.

The loss function of the training process was WGAN-GP [Gulrajani et al., 2017]. As

mentioned in Section 3.3.3.3, WGAN-GP assists in resolving mode collapse and gradient

vanishing problems for GANs model by applying the following steps:

1. Convert to a regression task by removing the log in the loss function.

2. Second, optimise using Wasserstein distance rather than JS divergence.

3. Thirdly, employ the gradient penalty to establish Lipschitz continuity (a term that

refers to a strong form of uniform continuity for functions).

5.1.2.4 Evaluation settings

A qualitative inspection and a loss plot of the model will be given. Because of time con-

straints, we were unable to run benchmark tests using other state-of-the-art approaches.

Nonetheless, the results of the second attempt as well as the final approach may be utilised

to conduct parallel comparison between different approaches.
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Figure 5.3: Angry Birds game level image samples generated in the first preliminary
attempt

5.1.2.5 Result

After 85 epochs, the synthesised samples were entirely black, which indicated the mode

collapse of the model. Additionally, materials synthesised prior than 85 epochs were inca-

pable of forming consistent and recognisable structures. Moreover, there is no discernible

improvement in image quality during the course of the training (See Figure 5.3).

According to Figure 5.4, the loss value of the discriminator dropped to near zero very

early in the training procedure. In contrast, the generator’s loss value oscillated more

strongly during the training duration. Additionally, the generator’s average loss value in-

creased through the training time, showing that it does not converge to a stable and per-

formable stage.

5.1.3 Discussion

The results indicate that cGAN failed to generate meaningful pixel-based level representa-

tions via walkthrough descriptions.

Following a thorough examination of the method and theory, I conclude that the follow-

ing two aspects are the primary causes to the failure:

1. Discriminator overpowered the generator because of the additional contrastive training

procedure, resulting in very little gradients provided for back-propagation. Hence the

generator cannot progress.
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Figure 5.4: Loss plot for GANs model
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2. The concatenation of the latent vector and the text embedding resulted in a sparse and

discontinuous latent data manifold, which makes interpolation difficult for machine

learning models.

5.1.3.1 "Precocious" discriminator due to contrastive learning

According to Equation 5.2, a well-performing D produced insufficient gradient for generator

to make progress, resulting in the generator being trapped at local minimum and producing

low quality samples. Recalling the GANs model’s loss function (Equations 5.1 and 5.2),

we can see that the discriminator’s loss function is constrained by an additional contrastive

training term. According to Figure 5.4, by training with extra mismatched data pairs (i.e.

negative sample), the discriminator converges significantly quicker than the generator.

Some may suggest to form an balanced and effective minimax adversarial training pro-

cess by adding contrastive training loss into the generator’s loss function. However, it is

unhelpful. Recall that the objective for the original generator is min Ez[log(1− D(G(z)))],

which has the intuitive connotation that the generator wishes to create synthesised samples

that are extremely similar to genuine samples, such that the discriminator recognises the

synthesised sample as real. However, applying additional contrastive learning cost makes

no sense, and the generator will eventually output low-quality samples in order to lower the

objective. The following is a demonstration:

min LG = min Ez∼pz ,t∼pdata [log(1− D(G(z, et), et))] [original loss]

− Ez∼pz ,tmis∼pmismatch_data [log(1− D(G(z, etmis), etmis))] [contrastive loss]

= min Ez∼pz ,t∼pdata [log(1− D(G(z, et), et))]

+ Ez∼pz ,tmis∼pmismatch_data [log D(G(z, etmis), etmis)]

=⇒ min Ez∼pz ,tmis∼pmismatch_data [log D(G(z, etmis), etmis)]

The loss function eventually tends to generate a sample G(z, etmis) of low quality because

it is the simplest way of lowing this generator’s objective.

In conclusion, while contrastive training is beneficial for training classifiers in Machine

Learning tasks, it is ineffective for developing GAN models. It is because the contrastive

training will unbalance the training pace between the discriminator and generator, causing

the discriminator to converge much more quickly and subsequently provide the generator

with insufficient loss information to advance. The solution of it is to just avoid the use
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Figure 5.5: Demonstration of the sparsity problem as no. of dimension increases

of contrastive training metric in the discriminator’s cost function. The under-trained dis-

criminator’s loss value generates a more stochastic gradient for the generator, increasing the

likelihood of leaping out of the local minimum.

5.1.3.2 Sparse and discontinuous latent data manifold

Concatenating the text embeddings to create a combined latent representation resulted in

a more sparse and discontinuous manifold of latent data. Our text embedding is a 768-

dimensional vector and the original latent variable z is a 100-dimensional vector, the joint

latent vector (z, et) is then laying in an 868-dimensional latent space. As the number of

dimensions rises, the data becomes exponentially more sparse, making interpolation task

extremely difficult for the machine learning model to handle. This is frequently referred to

as "the curse of dimensionality".

As seen in Figure 5.5, as the number of dimensions rises, the number of possible ways

for data points to differ from one another rises as well. It implies that the distance between

the next neighbouring data point would also rise exponentially, making interpolation more

difficult.

The scale of the AbVat dataset is quite tiny. The proposed cGAN model was required

to solve interpolation over the 868-dimensional latent space using just 1299 data points. As

such, it is extremely difficult for the GANs generator to conduct the right mapping between

latent space and real game level distribution.

There is currently no consensus about the size of latent space dimensions on the basis

of limited size of the training dataset. Some papers only ablate the choice of latent space

dimensionality in the presence of a sufficiently large dataset. For example, Brock et al. [2018]
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Figure 5.6: Illustration of the architecture for the second preliminary attempt

demonstrated their BigGAN model can be effectively trained with latent dimensions ranging

from z ∈ R8 to z ∈ R128.

In conclusion, the high-dimensional latent variable created by concatenating text embed-

ding vectors increases the sparsity of the data, making interpolation more challenging for the

GANs model.

5.2 Preliminary Attempt 2: transfer learning and "divide and

conquer" strategy

The first preliminary attempt showed that the model cannot function correctly because of

discriminator’s additional contrastive training and generator’s the high dimensional latent

space. To solve those issues, we split the task into two sub-problems: firstly, we only sample

high quality level images using GANs model; secondly, we map the text walkthrough to

the latent space of the generator (See Figure 5.6). This results in a low size of latent space

dimensions for the generator, which alleviates the sparsity problem. Transfer learning is also

used in this attempt to compensate for the scarcity of training data.



§5.2 Preliminary Attempt 2: transfer learning and "divide and conquer" strategy 39

5.2.1 Method

5.2.1.1 "Mapping rather than concatenating" and Bidirectional GANs model

The first attempt suggested that the high-dimensional joint latent representation makes inter-

polation difficult for cGAN model. Therefore, instead of concatenating two different modal-

ities of data in cGAN, we should "map" the text information to latent space. In order to do

that, we divide the task into two sub-tasks.

For this time, the GANs model focuses exclusively on generating data samples using a

standard latent variable z. After that, we require an additional text mapper to map the text

walkthrough to the associated level data’s latent representation.

Since the mapper is trained by supervised regression method, it requires the latent rep-

resentation of the real level data. However, the latent representation of the real data p(z|x) is

not accessible because GANs is an implicit density estimation model (See Section 3.3. Rather

of explicitly defining the distribution, a GANs model can only be a decent data sampler.

As a result, an extra encoder must be constructed so that it can project the data sample

back onto the latent space. Additionally, this encoder can be trained directly using back-

propagation of the loss gradient from the GANs’ discriminator. The following are the steps

in the training procedure:

1. Normal GANs model part

(a) Sample a latent value z from a standard Gaussian distribution N (µ = 0, σ = 1),

it is fed into the generator to produced G(z) ∼ pG.

(b) At this time, both synthesised data G(z) and the latent representation z are fed

into the discriminator (D(G(z), z)).

(c) The loss information generated from the discriminator will back-propagate and

train the generator module.

2. Additional Encoder module

(a) The real data sample x ∼ pdata will be concatenated with its latent representation

produced by the extra encoder E(x) ∼ pE. After that both of them are fed into

the discriminator D.

(b) the loss gradient from D(x, E(x)) will also back-propagate back to the encoder

module. The encoder will then learn to mimic the real latent representation, to

the point where the synthesised latent value for real data is indistinguishable

from the real latent value from the generator’s latent space pz.
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3. Text walkthrough mapper

(a) After we obtain the projection value E(x) from the real data distribution pdata to

the latent space pz, we apply an external text walkthrough mapper to map the

associated text information t, where (x, t) ∼ pdata, to the latent representation of

the matched game level (E(x) = M(et)).

(b) The mapper is trained by performing regression supervised learning method.

Therefore, the game level generation procedure is as follows:

1. Having a walkthrough description t, t ∼ ptext, the associated embedding et is fed into

the "Mapper" module to produce the corresponding latent representation M(et) ∼ pz.

2. The latent representation is fed into the generator to produce associated synthesised

game level G(M(et)) ∼ pgenerator.

3. Therefore we obtain a (t, G(M(et))) walkthrough and synthesised level pair.

This type of GANs model, which conducts reverse mapping from data sample x to its

latent representation z, is referred as Bidirectional GAN (BiGAN). This architecture was first

introduced by Donahue et al. [2016].

Since we do not need to concatenate the text-walkthrough embedding to the z, the size

of the latent space dimensions of the GANs’ generator can be as small as the conventional

z ∈ R100. This way, we reduce sparsity of the training data and therefore aids the generator

in doing more accurate interpolation.

5.2.1.2 Why not reduce the dimensionality of the text walkthrough while main-

taining the cGAN architecture?

There is an alternative remedy for the cGAN model, which is to shrink the text walkthrough’s

dimensions. As a result, we will have a shorter joint latent vector for the generator, which

will ease the training data manifold’s sparsity problem.

However, by reducing the dimensionality of the text embeddings, we may lose informa-

tion about the text walkthrough. Consequently, it may reduce the quality and diversity of

the synthesised level image. This is a trade-off between training stability and the fidelity of

the output.
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5.2.1.3 Transfer learning

We also attempted to use transfer learning techniques in the second attempt. To boost gen-

eralisation performance, we initially trained the GANs model using the COCO dataset [Lin

et al., 2014]. However, because the COCO dataset is not relevant to the Angry Birds Game,

we continued training the GANs model using frames collected from the AbVat video walk-

through.

We do not reuse the pre-trained discriminator throughout the actual training procedure.

This is because a properly trained discriminator will generate insufficient loss information to

allow the generator and encoder to advance. To be precise, a well-trained discriminator does

not allow the generators and encoders for sufficient exploration of the unknown space, but

instead forces them to exploit inside the fixed local domain.

5.2.2 Experiment and result

Most of the experimental settings are the same as the previous attempt, except the followings:

5.2.2.1 Dataset

Again, the training process makes use of the walkthrough descriptions and the game level

data pairs from the AbVat dataset. We employed both the COCO dataset and video frames

retrieved from the AbVat video walkthrough for the transfer learning procedure. The COCO

dataset aims to train the basic visual ability, while the AbVat video frames are used to im-

prove generalisation performance of the model directly in the context of the Angry Birds

game.

We extract frames every three seconds from the AbVat dataset’s video walkthroughs. As

such, we accumulated a total of 24736 Angry Birds gameplay images.

5.2.2.2 Training settings

Similar to the previous attempt, we used Adam optimiser with β1 = 0, β2 = 0.999. A conven-

tional 0.0004 and 0.00005 learning rate were used for the discriminator and both of generator

and encoder. Because of a shortage of data, we raised the number of epochs to 1600 to allow

the model to converge. The batch size was set to 32 in order to fully use the GPU’s memory

capacity. Setting the batch size to the maximum available was recommended by Brock et al.

[2018]. The objective function was the AGES-ALL proposed by Shen et al. [2020]. It claimed

that AGES-ALL is locally equivalent to simultaneously minimizing all the f -divergence with
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strongly convex f with scaling clipping method. This hence prevented from vanishing or ex-

ploding gradient problem better than the original f -divergence employed in f -GAN model

[Nowozin et al., 2016].

5.2.2.3 Result

The Bidirectional GANs model did not yield high-quality level pictures. The generator was

unable to generate meaningful and recognisable building components. The produced images

appear fuzzy, despite the fact that they include the right colours from the genuine data

samples. Mode collapse occurred as repeated samples were generated by different random

latent vectors (See Figure 5.7).

Because of the fact that this is a bidirectional GAN model, we may evaluate the model’s

capability by "reconstructing" the original data sample. Specifically, the encoder will be fed

the original data sample in order to generate the associated latent representation of the real

data zx = E(x), zx ∼ pE. The latent vector is then sent to the generator, which reconstructs

the data xrecon = G(E(x)). From Figure 5.8, we can find that most of the rebuilt image is

inconsistent with the original image (i.e. incorrect reconstruction). Another form of failure

is mode collapse. Nevertheless, there are some "relatively" good reconstruction samples that

attempted to replicate the original data’s characteristics.

5.2.3 Discussion

While the general quality of the synthesised data generated by BiGAN in the second at-

tempt is far higher than that produced by the cGAN model in the first attempt, three factors

continue to have a significant influence on performance:

1. The pre-trained generator does not effectively take the advantages of the data from the

previous settings to extract information that may be useful when learning the current

task.

2. The reverse mapping in the BiGAN model results in the explicit density model char-

acteristics, and thereby reducing its generation capacity due to poor design of prior

distribution (See Section 3.3).

3. Finally, we cannot ignore the impact of a dearth of training data. Given that the vast

majority of accessible large-scale training datasets do not pertain to the Angry Birds

domain, we cannot rely on transfer learning to resolve the data shortage issue.

Details will be discussed in what follows.
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Figure 5.7: Generated samples from the second attempt using BiGAN
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Figure 5.8: Reconstruction samples from the second attempt using BiGAN

5.2.3.1 Ineffective transfer learning

It is shown that COCO dataset and Angry Birds video walkthrough frames did not improve

the model’s performance sufficiently. The COCO dataset is ineffective since it bears little

resemblance to the Angry Birds game domain. However, ideally, the Angry Birds video

walkthrough frames should presumably improve the generator’s performance, given that

these pre-training datasets are in the Angry Birds game domain.

The truth is, the Angry Birds gameplay video dataset is a poor candidate for unsuper-

vised pre-training. This is because the different frames are not sufficiently varied. As shown

in Figure 5.9, the successive frames are visually similar to their neighbours, and thus the

model cannot extract diverse and informative knowledge from them. In other words, the

Angry Birds gameplay video collection is information-poor, which means that even though

the size of the dataset can reach 24736, the total knowledge that can be extracted from this

dataset is scarce.

The subsequent frames appear identical owing to the fact that the background informa-

tion occupies the majority of the image area. These shapes and colours in the background

will remain consistent throughout the gaming episode. Worse still, this background informa-

tion does not help to the development of level content because it neither contributes to the

gameplay nor interacts with the players.

However, the consecutive frames are in fact distinct in terms of their states if examining

closely. As seen by the illustration, the structure of the building progressively collapses
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Figure 5.9: Demonstration shows that there is not much visual differences between
the successive frames, therefore the unsupervised pre-training video frames dataset

is information-poor

throughout the frames. However, because the building structures only comprise a small

percentage of the overall screen, it is extremely difficult to extract state information from the

model.

One solution is to change the pixel-based level representation to XML-format level rep-

resentation. By doing this, we can filter out the gameplay-irrelevant information. Another

solution is to have additional Area-of-Interest (AoI) labelling so as to guide the model to

concentrate on the significant area. However it requires additional labouring force to do the

labelling task.

5.2.3.2 Reverse mapping essentially means explicit density model

There were many existing works that tried to explain the relationship between Variational

Autoencoder (VAE) and GANs model. Nowozin et al. [2016]; Arjovsky and Bottou [2017]

gave theoretical proofs that the objective of the original GAN is equivalent to minimising JS

Divergence, which is just a special instance of f -divergence family. Works from Donahue

et al. [2016]; Shen et al. [2020] showed that VAE and GAN are special case for BiGAN, whose

the objective is also equivalent to minimize a instance (i.e. KL divergence) of f -divergence

family. We recall the following equation due to Shen et al. [2020]’s paper that demonstrates
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the objective for VAE is a special case for BiGAN’s objective:

Given that general objective for BiGAN is

L(θ, φ) = D f (pe(x, z), pg(x, z))

where θ refers to the parameters of the generator

and φ refers to the parameters of the encoder

pe(x, z) is the joint encoder distribution pdata(x)pe(z|x)

pg(x, z) is the joint generator distribution pz(z)pg(x|z)

D f function measures the f -divergence

Then, the objective for VAE is

LVAE = −Ex∼pdata [Ez∼pe(z|x)[log pg(x|z)]− DKL(pe(z|x), pz(z))]

= DKL(pe(x, z), pg(x, z))− Epdata(x)[log pdata(x)]

= L(θ, φ) where f -divergence is KL divergence

(5.3)

More details can be found in their papers, but in summary, Bidirectional GAN can be

regarded as a combination model of VAE and GANs. Therefore, BiGAN is a partially ex-

plicit density model. The generation performance is worse than the vanilla one-directional

GANs model due to inappropriate choice of the prior distribution pz of the model (Usu-

ally for simplicity, the prior distribution is always set to standard Gaussian distribution).

The performance further decreases with the lack of training dataset (See Section3.3 for more

details).

5.2.3.3 Lack of training data

Lack of training data is the main issue behind all the phenomenon. All the remedy ap-

proaches we came up with so far, from "decreasing latent space dimensionality" to "transfer

learning", aim to mitigate the influence of the shortage of training data. All GANs archi-

tecture should perform effectively given abundant and diverse training data. However, the

total amount of data entries in our model for training level generation is just 1299, which is

considered insufficient for deep learning models. Typically, deep learning models are trained

using a large diversified dataset, such as ImageNet [Deng et al., 2009], which comprises 15

million high-resolution photos classified into 22,000 groups.

We cannot rely on transfer learning since we lack sufficient in-domain datasets for pre-
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training. Rather than that, we will focus on how to improve the training procedure’s data

efficiency so that the model may be trained successfully even with a limited quantity of data.

5.3 Summary

The first preliminary attempt is the first trial of generating level contents conditioned by

text walkthrough using cGAN architecture. However because of the unbalanced training

efficiency between the discriminator and the generator, as well as the sparsity issue caused

by high dimensional latent space, the first attempt failed to function.

The second preliminary attempt tried to reduce the dimensionality of the latent space of

the generator using BiGAN and an additional text mapper. We also tried to apply transfer

learning tricks to alleviate the shortage of training dataset. However, because of information-

scarcity in the pre-training dataset and the explicit density modelling nature of BiGAN, the

second model’s performance did not meet expectations either.

There are two possible remedies for the second preliminary attempt. The first is to avoid

using the partially explicit density model BiGAN, which may perform worse than the original

GAN. The second approach is to develop a method for training a model with great data

efficiency, such that our level generation model may continue to perform effectively with just

about 1,000 training examples.

This brings us to our final implementation. Chapter 6 will describe the methodology used

to address the remaining issues from the second preliminary attempt, as well as the experi-

mental result, which demonstrated a promising performance of level generation conditioned

by text walkthrough information.
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Chapter 6

Design and Implementation

Because of a lack of training data, both models from the early attempts, notably cGAN and

BiGAN, failed to work. Nonetheless, we conducted a failure analysis and developed an

improved design, which will be presented in this chapter. Keep in mind that our goal is not

just to imitate existing levels, but to build novel levels that are not seen in the training dataset,

so that this model may be used as a valuable procedural level generator for generating large

scale training levels for AI agents’ development and testing. Chapter 7 will discuss the

experiments and the outcomes in depth.

6.1 Architecture Overview

The proposed architecture is in fact an "incremental" upgrade of the previous designs in the

preliminary attempts. According to the failure analysis for the second preliminary attempt,

it is better to avoid the use of BiGAN model because of the generation performance drop

caused by its explicit density modelling feature. Also we need to increase the data efficiency

of the training process. Therefore, we came up with the architecture shown in Figure 6.1.

There are two significant modifications between this design and the previous one (See

Figure 5.6). The first is the decoupling of the discriminator and encoder modules so as to

avoid explicit modelling of the distribution p(x, z). The second is the addition of a data

augmentation module to increase the data training efficiency. The next sections will address

various aspects of the design.

6.2 Module 1: level generation by multi-scale learning

According to the earlier research [Zhang et al., 2017b; Karras et al., 2017, 2019, 2020b; Karnewar

and Wang, 2020], multi-scale learning can significantly improve the training stability of one-

directional GANs models. Multi-scale learning can be regarded as a variant of "divide and
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Figure 6.1: Overview architecture of the proposed design for generating Angry Birds
game levels from walkthrough description

conquer" strategy, in which the the generator synthesises the data at different scales (e.g.

In terms of image data, the generator synthesises the image at different resolutions). Then,

the set of synthesised data at different levels is fed separately to the the discriminator. As a

result, the produced gradient is able to guide the data generation process at each hierarchical

levels.

Multi-Scale Gradient GAN (MSG-GAN) is a GANs model that utilises the concept of

"multi-scale learning". As shown in Figure 6.2, it started with a minuscule layer that generates

images at very low resolution (e.g. 4 × 4). The resulting data is subsequently fed to the

corresponding layer of the discriminator through a "skip" connection. By doing this, the

discriminator needs to distinguish the sample depending on its representation at various

scales. As a result, it provides additional control to the generation process, starting from a

general view to finer details, thereby stabilising the training process.

In our work, we employed the StyleGAN2 model [Karras et al., 2020b] to generate game

levels. StyleGAN2 uses MSG-GAN as the generator’s backbone architecture and ResNet [He

et al., 2016] as the discriminator’s. The residual connection in the ResNet framework also

adheres to the idea of "multi-scale learning".
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Figure 6.2: Illustration of the Multi-scale learning in MSG-GANs model.
The generator produces image at different resolutions and concatenate to the cor-
responding layer of the discriminator. Thus the discriminator is able to provide

additional gradient information to guide the image synthesis at different scales
Copyright and adapted from MSG-GAN paper [Karnewar and Wang, 2020]

6.3 Module 2: inverse mapping from game level to its latent

representation

An encoder that maps the game level images back to their latent value is required in our

approach, because the latent values of the real data images are required to train the text

mapper (Module 3). Our encoder module is built around the Swin-transformer [Liu et al.,

2021] (See Figure 6.3). This is a vision backbone network that processes visual input using

the Transformer architecture [Vaswani et al., 2017], which is well-known for its capacity to

model long-range relationships in data via the self-attention mechanism. In comparison to

earlier research on vision transformers (e.g. [Dosovitskiy et al., 2020]), Swin-transformer

significantly reduces the computational complexity from quadratic to linear with respect to

the size of input images.

Specifically, Swin-transformer reduces computing costs by dividing the global receptive

field into smaller windows, allowing the model to calculate just the local self-attention. As

seen in Figure 6.4, the computational cost of global self-attention is Cglobal = (8× 8)2P =

4096 × P where P is the cost of one patch performing the attention mechanism with an-

other patch. When the global receptive field is partitioned into four smaller windows, the



52 Design and Implementation

Figure 6.3: Overview of the Swin-transformer architecture.
Copyright and adapted from Swin-transformer paper [Liu et al., 2021]

Figure 6.4: An illustration of the window approach of self-attention.
Copyright and adapted from Swin-transformer paper [Liu et al., 2021]
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computational cost drops to Cwindow = 4× ( 8
2 ×

8
2 )

2P = 1024× P.

However, because separate local windows are isolated, the self-attention module lacks

connectivity across the distinct windows areas. As a result of the absence of global depen-

dency modelling, performance may suffer. To resolve this, the author shifted the window

partitioning in the following layer so as to link areas that were previously disjoint. Such

a shifting behaviour is quite similar to how a convolutional neural network (CNN) kernel

convolves around the input volume.

In terms of training, since we changed the level generation model back to one-directional

GANs, it is not required to explicitly specify the model distribution p(x, z) = p(x|z)p(z). As

a result, we may prevent performance degradation caused by an inappropriate choice of the

prior. In the new approach, we applied supervised regression training on the encoder using

the synthesised picture samples as training inputs and the related latent values as labels. We

employed the traditional L2 loss function for the regression task, which is also known as

Mean Square Error loss (MSE). In comparison to other regression loss functions, L2 loss does

not accept outliers, which is necessary in our case since an outlier value in the latent space

produces significantly different game level images.

6.4 Module 3: mapping from text to latent representation

By using "Module 2", we are able to obtain the latent representation of the real handcrafted

game level. For the final step, we need a language model that maps the language text to

the latent representation of the associated game level image. By doing so, we are able to

complete the whole generation process, as mentioned in the previous section 5.2.1.1.

The BERT [Devlin et al., 2018] model has served as the mainstream backbone architecture

for the deep learning language model since 2018. It uses multi-head, multi-layer Transformer

blocks. (See Figure 6.5). Besides the use of "Self-attention" mechanism in the modelling

process, BERT is most known for two of its unique pre-training strategies, namely "Masked

language modelling" and "Next sentence prediction". The BERT network allows for a large

scale unsupervised pre-training process. After doing that, the pre-trained model may be

fine-tuned and applied to its downstream task. Our work of mapping text to latent space is

an example of the downstream task.

In practise, we used pre-trained DistilBERT [Sanh et al., 2019] from the huggingface

library. DistilBERT is a lightweight pre-trained version of BERT that is easily deployable on

a personal computer. To achieve the mapping task, the model was fined-tuned by adding

an extra fully connected layer at the end of the model with the output dimension equal to
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Figure 6.5: BERT model architecture
Copyright and adapted from BERT paper [Devlin et al., 2018]

the latent space dimension (See Figure 6.6). This way, we are able to conduct supervised

regression training using the walkthrough sentences as training data and the latent value of

the corresponding game level image as the training labels.

6.5 Data augmentation: Image

In general, deep learning models are data hungry. As seen in our earlier attempts, the well-

known GAN models cGAN and BiGAN both failed to work due to a lack of training data.

As such, data augmentation is introduced so as to enable the training process to be more

data efficient, allowing the model to converge even with limited data.

Data augmentation technique has already been widely used in the computer vision do-

main as a "regularisation" method to avoid the over-fitting problem. The theoretical justifi-

cation for why it can enhance performance on CV tasks like "classification", "detection" and

"segmentation" is as follows:

1. When an image sample is projected into high-dimensional feature space, the data man-

ifold is discontinuous and sparse, making it difficult for the model to map.

2. The data augmentation techniques such as "Flip," "Rotation," and "Resize" do not alter

the meaning of the image; rather, they helps the image to span out in the feature space
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Figure 6.6: DistillBERT with a fully connected layer to perform regression task to get
the latent representation of the associated game level image

to form a continuous domain, which hence solve the sparsity problem.

3. As indicated by [Zhang et al., 2017a; Yun et al., 2019], "Mixup" and "Cutmix" act as

a regularisation method that causes the deep learning networks to favour the "linear

behaviour" in the feature space. As a result, the resilience against adversarial examples

is increased, and the training process is stabilised.

Work from [Karras et al., 2020a] proved that by having data augmentation layer in the

GANs model, the generator can function well even with very limited data. The reason is

because data augmentation increases the quantity as well as the diversity of data samples

observed by the discriminator. According to the loss function for the GANs model (See

Equation 3.1), the generator updates itself by back-propagating the gradient coming from

the discriminator. So, by having the data augmentation module, the discriminator is able

to offer the generator with more and diverse loss information, allowing it to progress more

effectively. The paper also spot the mistake from the previous study on data augmentation for

GANs model. The bCR-GAN model from [Zhao et al., 2020] applies the data augmentation

technique exclusively during the discriminator training phase. This results in a mismatch

between the distribution that the generator wishes to match and the distribution that the
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Data augmentation method Applicable domain

Flip Classification, Detection, Segmentation
Rotation Classification, Segmentation
Resize Classification, Detection, Segmentation
Croping Classification, Detection, Segmentation
Noise Classification, Detection, Segmentation
Color distortions Classification, Detection, Segmentation
Geometric distortions Classification, Segmentation
Random erase, CutOut Classification, Detection
Hide-and-seek Classification, Detection
Mixup [Zhang et al., 2017a] Classification, Detection
CutMix [Yun et al., 2019] Classification, Detection

Table 6.1: Type of data augmentation and its applicable domains

Figure 6.7: Illustration of the data augmentation work in bCR-GAN and GAN-ada
Copyright and adapted from GAN-ada paper [Karras et al., 2020a]

discriminator frequently works at, thereby preventing them from forming stable adversarial

training (See Figure 6.7).

6.6 Summary

In this Chapter I describe and justify the designs and methods I used for constructing the

proposed level generation model. The designs and methods aim to resolve the issues from

previous models in the preliminary attempts. At this point, a promising system that gen-

erates Angry Birds game levels by walkthrough description is presented. Chapter 7 will

present the experimental settings for the proposed procedural level generation model.
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Experimental settings

The next sections detail the experimental conditions and results of the suggested approach.

Section 7.1 specifies the programming environment in which the experiment was done. The

dataset utilised in the experiment is described in Section 7.2. Section 7.3 describes the baseline

models against the proposed model. Section 7.4 discusses the proposed model’s hyper-

parameter parameters. Finally, Section 7.5 details the evaluation metrics we utilised to assess

the method’s performance.

7.1 Programming environment

The experiment was done in the Anaconda Python environment, with Pytorch as the deep

learning framework. Deep learning algorithm was accelerated using NVIDIA CUDA and the

cuDNN library. The experiment was conducted using an NVIDIA GeForce RTX 3090 GPU

with up to 10496 CUDA Cores and up to 24 GB GDDR6X RAM. Table 7.1 and Table 7.2 show

the software and hardware specifications.

7.2 Dataset

We used the AbVat dataset, which was discussed in Chapter 4, to train the entire system. It

includes 1299 pairs of walkthrough descriptions and level images for the handcrafted Angry

Birds game episode. First of all, we trained the system’s level generation module with only

the AbVat’s game level images. The training images are downscaled to 256× 256 to accelerate

and also stabilise the GANs model training process.

The level encoder module receives its training data from the well-trained level generation

module. In total, we generated a total 50000 synthesised training data. The training labels are

the random latent values generated by numpy random seeds ranging from 0 to 50000, while

the training inputs are the associated synthesised image samples from StackGAN2 generator.
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Software environment Specification

Operating System
64-bit Arch Linux
Kernel version 5.11.16

Programming Environment
Anaconda python
Pytorch framework

NVDIA Config
Driver Version: 465.27
CUDA version: 11.3

Library packages

imageio, imageio-ffmpeg
nltk 3.6.2
numpy 1.20.1
pandas 1.2.4
python 3.8.8
pytorch 1.9.0 pytorch-nightly
tqdm 4.59.0
torchvision 0.10.0
transformers 4.5.1

Table 7.1: Software environment specification description

Hardware environment Specification

CPU AMD Ryzen 5 2600 6-Core Socket AM4 3.4GHz
Memory 16GB (2x8GB) 3200Mhz DDR4 RAM
Hard Drive 512GB M.2 NVMe SSD
GPU Nvidia GeForce RTX 3090 24G

Table 7.2: Hardware environment specification description
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To train the text description mapper module, we utilise the AbVat dataset’s text descrip-

tions as training data and the associated latent representations from the well-trained level

encoder module as the training labels. However, this indicates that the language model has

only a total of 1299 available training data. As a result, we applied a transfer learning strat-

egy in which we used the off-the-shelf pre-trained weights from the huggingface library as

the language model’s starting configuration, alleviating the issue of data scarcity.

COCO and CelebA datasets were also utilised locally to pre-train the weights of the Stack-

GAN2 model in the level generation module, as well as the weights in the Swin-transformer

network in the level encoder module. Both datasets are scaled into 256× 256 to conform to

the AbVat dataset’s property. Although neither of the pre-training datasets is in the realm of

the Angry Birds game, they are anticipated to train the model’s basic visual cognition, which

is handled by the network’s bottom level layers.

7.3 Baselines

To evaluate the relative performance of the proposed framework, one can compared to previ-

ous two frameworks stated in the preliminary attempts in Chapter 5. A general comparison

table 7.3 between three approaches is shown below.
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7.4 Training details

7.4.1 Module 1: Level Generation model

The first module makes use of the StackGAN2 neural network. We input the model a 100-

dimensional latent vector z and it produces a 256 × 256 synthesised game level image. For

both the generator and discriminator, we utilise the Adam optimiser with β1 = 0 and β2 =

0.99. Both initial learning rate is set to 0.0025. We did not specify individual learning rates

because Adam is capable of autonomously modifying the learning speed. The probability of

style mixing is set to 0.6 (style mixing is a training trick that tries to decouple the feature into

singular dimension of the latent space).

The data augmentation layer is activated with a probability of 0.6 and data augmenta-

tion options are "pixel blitting," "geometric transformation," and "colour transformation," as

indicated in the study [Karras et al., 2020a].

7.4.2 Module 2: Reverse mapping level encoder

The Swin-transformer model used AdamW optimiser, with a base learning rate of 0.00125, a

decay rate of 0.1 and a momentum of 0.9, β1 = 0.9, β2 = 0.999. The total number of training

epochs is set at 300, with each epoch containing 50000 number of training data. The drop

path rate is set to 0.5 during training, which aids in decoupling the functionality of each path.

The loss function for the regression problem is set to MSE loss. The number of layer is set to

4. The default number of window self-attention blocks for each layer is [2, 2, 18, 2], whereas

the default number of heads being for each layer is [4, 8, 16, 32].

7.4.3 Module 3: Text to latent space mapper

We used a pre-trained DistilBERT model called "distilbert-based-uncase" from the hugging-

face library. A fully connected layer was inserted on top of the pre-trained model, mapping

the model’s default output dimension of 768 to the latent space dimension of 100. AdamW

optimizer was adopted, which has a learning rate of 0.001, β1 = 0.9 and β2 = 0.999. MSE

was used as loss function.

The BERTTweetTokeniser from huggingface library was used to tokenize the words in the

text walkthrough. A specific token "[SEP]" was used to denote the need to separate distinct

sentences. The transformer block’s maximum input length is set at 128. This means that

walkthrough descriptions will be trimmed if they exceeds the word count of 128. Neverthe-

less, the majority of the text walkthrough shall remain within the range, as seen in Figure 7.1.



62 Experimental settings

Figure 7.1: Total words distribution of the text walkthrough in the AbVat dataset
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7.5 Evaluation Metrics

For Module 2 and Module 3, since they are doing the regression task, it is suitable to report

the loss score of the training process to indicate the performance of the modules.

A variant of the Inception Score (IS) metric called "Fréchet Inception Distance" (FID),

proposed by [Heusel et al., 2017], is commonly used to measure the performance of GANs

model. The IS and FID formulae are shown below.

IS(G) = exp(Ex∼pg DKL(p(y|x)||p(y)))

FID(G) = ||µr − µg||2 = Tr(Σr + Σg − 2(ΣrΣg)
1/2)

(7.1)

x ∼ pg refers to the synthesised image from the generator. p(y|x) refers to the probability

distribution that a Inception V3 model classify the given synthesised image x. p(y) refers to

the marginal probability distribution of the classes that a synthesised image can belong to.

DKL is the KL divergence, which measures the distance between two distributions. µ and Σ

refer to the mean and covariance of the distribution. So, generating images of high quality

and variety results in larger DKL(p(y|))||p(y) and hence a higher Inceptions Score.

As we can see, IS does not take the gap between the synthesised and actual data distri-

butions into account. And the performance is largely dependent on the external Inception

classifier. To address this issue, FID evaluates synthesised pictures based on how closely the

distribution matches that of the real data.

As a matter of fact, qualitative evaluation plays an more important role in this project

than quantitative evaluation. This is because critical components of a game’s level, like "en-

joyment", "entertainment," and "level of physical reasoning required" are difficult to quantify.

It is also difficult to quantify how a synthesised game level matches the semantic meaning

of the corresponding text walkthrough. This might be done by having an language-based

game agent to test if it could solve the generated game level by analysing the walkthrough

information. However, such a quantitative measurement is over complicated and outside the

scope of this project.

We will examine the output level images qualitatively in this project to see whether the

output is properly conditioned by the walkthrough description. Apart from the loss plot, we

also inspect the quality of the reconstructed pictures (i.e. G(E(G(z))) = G(z)) to determine if

the encoder effectively encoded the game level content’s characteristics into the latent space.
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7.5.1 Evaluation of novel level generation

Most importantly, the following evaluation processes will be used to examine whether the

design is capable of generating novel game levels, hence increasing the number of useful

game levels for the development and testing of AI agents.

1. By concatenating two walkthrough descriptions, determine whether the synthesised

game level possesses both characteristics of the source game levels.

2. By swapping parts of two walkthrough descriptions, determine whether the two syn-

thesised game levels share partial characteristics from each of the source game level.

3. By removing parts of a walkthrough description, determine whether the synthesised

game level loses some characteristics from the source game levels.

4. By inputting noise, determine the effect on the synthesised game level.



Chapter 8

Results and Discussion

8.1 Quantitative Results

8.1.1 Level Generator’s performance

FID score measures the similarity between the synthesised data distribution and the real

data distribution. As seen in Figure 8.1, the game level generator’s performance continued

to improve as it approached a lower FID score. However, at the midway period, the FID score

suddenly increased dramatically. This indicates that the generator did not produce data that

is close to the actual data distribution. To understand precisely what occurs, we must do a

supplemental qualitative investigation.

As seen in Figure 8.3, when the FID score increases abruptly, the generated samples be-

come completely twisted in their colours. Additionally, the majority of the structure appears

to be identical. It implies that the generator faced mode collapse, a situation in which the

generator gets trapped in local minima as it prefers to generate monotonous but safe images.

The GANs model recovered in a relatively short period of time (between timestamp 300 to

350) due to the use of Wasserstein loss metric.

Interestingly, we can see that the generator’s initial FID is actually lower than the mode

collapse period’s score. This is mostly due to the fact that we pre-trained the generator using

the CelebA dataset. Although the CelebA dataset is not tied to Angry Birds, it contributes to

the network’s fundamental visual cognitive capacity and makes training more efficient.

We pause the training of the GANs model after 5 days due to the time constraint. As seen

in the figure, the model may continue to improve with more training. Whether the model

can get a lower FID score following mode collapse is yet to be proved.
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Figure 8.1:

Figure 8.2: The FID score of the GANs model for game level generation; the smaller
the value, the better the performance.

Figure 8.3: Generated samples when the FID score rise suddenly. The sample shows
a mode collapse happened



§8.1 Quantitative Results 67

Figure 8.4: Loss plot of Swin-transformer level encoder

8.1.2 Level Encoder’s performance

Figure 8.4 illustrates the MSE loss of the training procedure for the Swin-transformer level

encoder. Clearly, encoder loss continues to decrease over time. However, the gradient of the

loss plot indicates that the level encoder still has a lot of room to improve, but owing to time

constraints, we halt the training process after two days.

Notice that the training time for level encoder is set to be shorter than that for the level

generator. This is based on the fact that regression model is easier to train than the generative

model.

The lowest MSE loss is around 0.6. Eventually, errors from various modules will aggre-

gate and generate an undesired output. Our third model, the text language mapper, will

be trained using the output of this level encoder. As a result, even if the text mapper is

well-trained, the output may be erroneous owing to the under-trained level encoder.

8.1.3 Text Mapper’s performance

As seen in Figure 8.5, the DistilBERT text mapper is well-trained. This is mostly because we

only have 1299 training data for the language model. Nonetheless, the pre-trained DistilBERT

weights are likely to improve the model’s generalisation performance. However, qualitative

checks are required to ascertain real performance.
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Figure 8.5: Loss plot for DistilBERT text mapper module

8.2 Qualitative Results

8.2.1 Overview of the generator’s performance

As seen in Figure 8.7, our proposed generator achieves a large performance improvement.

Although the game objects are a little bit skewed and some fine details are lost, they are

clearly identifiable in the level image samples. We think that the fidelity of the generated

output has met our expectation, as programmers can easily reconstruct the levels in the

open-source Science Birds framework using the provided images.

We are able to discover some quite interesting things by browsing through the produced

samples. First of all, we can see that the generated level images retain the background

information, despite that it does not contribute to the gameplay.

The generator is capable of generating complex but stable structures. As seen in Fig-

ure 8.8(a), even though the model contains no additional procedures to verify the structure’s

stability, the generator automatically learns the "good features" from the handcrafted training

data.

However, there are certain issues with the generated game levels. As seen in Figure 8.8(b),

the generated level may be unsolvable because a group of pigs is completely covered with

indestructible stones.
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Figure 8.6: Samples from real game levels

Figure 8.7: Comparison of the pixel-based game level between the generator from
the second preliminary attempt and the proposed generator
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(a) Example of a complex but stable generated level (b) Example of unsolvable game level

Figure 8.8: An example of typical generated game levels

8.2.2 Reconstruction using Level Encoder

To evaluate the level encoder’s performance, we can do a reconstruction task. This is ac-

complished by converting level images to latent vectors using the level encoder and then

regenerating the image using the generator (G(z) ≈ G(E(G(z))))). Figure 8.9 demonstrates

that the majority of the structure and state of the game objects are kept, however some errors

occur throughout the reconstruction process. For example, in the third image pairs, one pig is

deleted after reconstruction.The loss plot in the previous section also confirms the existence

of the mistakes.

8.2.3 Level generation from walkthrough descriptions

Figure 8.10 illustrates the generation of Angry Birds levels using walkthrough descriptions.

The synthesised game level images exhibit similarities to the real levels, hence demonstrating

that this model is capable of controlling the content of outputs using walkthrough informa-

tion. This is a significant improvement over the existing imitation learning models as the

previous models are unable to control the output due to implicit data modelling.

The fifth example demonstrated that, though the general feeling between the real and the

synthesised levels are similar, the details between them are quite different. For instance, even

though both of them utilised square blocks to build the structure, the material varies from

stone to wood. This, however, actually further proved that our model is capable of generating

novel game levels that are not included in the training dataset, and hence it highlights the

capacity of creating a diverse game environment for the AI agents.

We further examine the capacity of producing novel game levels by manipulating the text
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Figure 8.9: Reconstruction of the game level, so as to testing the performance of level
encoder in the system

Figure 8.10: Level generation using text walkthrough information
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walkthrough. Figure 8.11 shows that, by performing manipulation of the text walkthrough

input, the generator is able to produce novel levels that are unseen in the training data. But

meanwhile, they are still constrained by the text information.

1. By concatenating two walkthrough descriptions, we can see that the number of game

objects in the generated level increases. We believe that this is because a lengthy text

tour frequently suggests a sophisticated game level with more game objects in the

training dataset. Thus, by increasing the length of text walkthrough, the generator will

tend to move to the feature space that has large amount of game objects.

2. By removing parts of a walkthrough description, we see a drop in the number of game

objects. Yet, it still retains some features from the original game level.

3. By replacing parts of two walkthrough descriptions, the generated level looks quite

different from the original one. This may be because "replacement" is not a linear

arithmetic operation in the feature domain.

Surprisingly, when we feed the model irrelevant text, it still constructs an acceptable

structure. This, we believe, is because when the text mapper maps unknown or unfamiliar

text input to the latent value, it remains within the generator’s working domain, and thus, it

generates an acceptable level picture rather than random noises.

8.2.4 Evaluation of the level of physical reasoning

Our work also aim to produce meaningful levels that allow agents to learn physical reason-

ing. This can be evaluated by checking whether the generated levels are consistent to the

physical reasoning information provided in the walkthrough description. As shown in Fig-

ure 8.12, the model is able to capture the physical information in the walkthrough description

to some extent. For example in Figure 8.12(a) and Figure 8.12(b), since the descriptions men-

tion "domino effect", the model tends to generate several thin structures close to each other

so as to provide a good condition for such a "domino effect".

8.3 Summary

The experiment results suggest that the proposed generator is capable of controlling the out-

put using text walkthrough. Additionally, the results demonstrated that the model is capable

of increasing the "variability" of data as an imitation approach, as we can generate novel

levels by manipulating the text inputs via "concatenation," "replacement," and "removal".
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Figure 8.11: Demonstration of generating novel images by text walkthrough manip-
ulation

(a) Generated level and walkthrough pair 1 (b) Generated level and walkthrough pair 2

Figure 8.12: Samples to examine if the procedural level generator is able to produce
useful level in terms of physical reasoning
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Also, the result showed that the system was able to capture the abstract concepts to some

extent, and thus we saw a promising capability of generating useful levels for agents to learn

physical reasoning. However, not all concepts can be captured accurately by the system. I

attribute this phenomenon to a extremely lack of training data. A remedy can be asking

different volunteers to come up with their own walkthrough descriptions for the same game

level. By doing this, the system can form a more general understanding of the feature of the

game levels rather than overfitted to one description.

The conclusion is presented in the next chapter.



Chapter 9

Conclusion

This thesis explored several methods for generating Angry Birds game levels that are condi-

tioned by walkthrough descriptions. With the use of high performance GPGPU and Pytorch

deep learning framework, we came up with a promising Angry Birds game level genera-

tor by using Generative Adversarial Networks (GANs), the state-of-the-art generative model,

as the backbone architecture. By applying techniques like "Multi-scale training", "Transfer

learning" and so on, we effectively stabilise the learning process and alleviate the problem

due to data sparsity and diversity.

By providing different walkthrough descriptions, the model tends to generate various

game levels that are consistent to the physical reasoning concepts conveyed in the provided

texts. This demonstrates a promising capability of providing high quality game levels that

can be used for developing and testing physical reasoning agents and algorithms.

Additionally, the thesis work resolves the concerns in regard to imitation-based algo-

rithm. Imitation approach would be considered incapable of control and output and increase

the diversity. However, this thesis showed that we can generate conditioned levels by in-

putting specific walkthrough description. Moreover, it can generate novel game levels, sim-

ply by manipulating the waklthrough description inputs using methods like "concatenation",

"replacement" and "removal".

Another contribution of this thesis is construction of the Angry Birds game level and

walkthrough dataset, AbVat. This dataset not only helps to train procedural level generation

model like in this thesis, it can also be used for many other research areas, including natural

language processing and reinforcement learning.

9.1 Future Work

This thesis is just a preliminary work to the larger goal, which is to increase the variety

and quantity of virtual environments available for the development and testing of physical
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reasoning agents. Due to a lack of time and the heavy workload associated with the research

subject, several areas remain to be improved.

9.1.1 Improvement of AbVat dataset

The current AbVat dataset comprises just 1299 training samples, which is insufficient for

deep learning models that require a lot of data. Thus, the first step is to amass a wider range

of handcrafted game levels. There are many Angry Birds game levels accessible; however,

I did not collect them in this project due to the absence of a text walkthrough. So, we may

collect all accessible data for game levels first, and then seek volunteers to generate the text

walkthroughs for the new game levels.

Additionally, an appealing future work would be to change the existing pixel-based level

representation to XML format, that would allow the level generation model to be trained

directly on the XML format. This way, visual aesthetic and background information that

is irrelevant to the gameplay can be filtered out. Furthermore, by utilising an XML-based

level representation, we can directly construct the level within the Science Birds framework,

allowing for the execution of further experiments.

9.1.2 Level stability testing and training

A fantastic feature of physics-based simulation games is that the objects in them obey to

Newtonian physics. As a result, it is critical to maintain the stability of the generated game

levels in the Angry Birds game. Unstable generated structures will simply collapse at the start

of the game, leaving the game unplayable. Due to the fact that this project’s level generation

task is purely pixel-based, creating a level stability checker for images is extremely difficult:

in order to gather their precise spatial information, we must extract the objects from the noisy

background and re-model them, which is already a very complicated task. In contrast, the

spatial information about the game objects can be easily collected from a XML format level

representation and consequently a direct stability check can be executed.

Additionally, further study should be conducted to avoid unstable structures. Rather than

repairing the unstable structure after each generation, we shall investigate neuro- symbolic

techniques for constraining the generation process, such as incorporating the stability metric

score in the training loss function.
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9.1.3 Better quantitative evaluation involving Reinforcement learning agents

Our present work lacks quantitative metrics for determining if the created game level is

semantically coherent with the associated text walkthrough. This might be accomplished

by training a language-based agent to play the synthesised game level using the associated

text walkthrough. This way, we can assess the semantic consistency of the generated game

levels via the performance of the language-based agent. Assuming the text walkthrough is

precise and instructive, if the agent is able to solve the generated level within fewer trials, it

is deemed more semantically consistent, and vice versa.

However, developing a well-trained language agent is a difficult challenge in and of

itself, which is why we launched this project: to improve the diversity and quantity of virtual

environments in which reinforcement learning agents can advance.
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Figure 9.1: Generated level sample 1
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Figure 9.2: Generated level sample 2
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Figure 9.3: Generated level sample 3
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Figure 9.4: 7 × 7 generated level samples
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